8 research outputs found

    A test on Ellenberg indicator values in the Mediterranean evergreen woods (Quercetea ilicis)

    Get PDF
    The consistency and reliability of Ellenberg’s indicator values (Eiv) as ecological descriptors of the Mediterranean evergreen vegetation ascribed to the phytosociological class Quercetea ilicis have been checked on a set of 859 phytosociological relevés × 699 species. Diagnostic species were identified through a Twinspan analysis and their Eiv analyzed and related to the following independent variables: (1) annual mean temperatures, (2) annual rainfall. The results provided interesting insights to disentangle the current syntaxonomical framework at the alliance level demonstrating the usefulness of ecological indicator values to test the efficiency and predictivity of the phytosociological classification

    How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities

    Get PDF
    There are several community-based bioindicator systems that use species presence or abundance data as proxies for environmental variables. One example is the Ellenberg system, whereby vegetation data are used to estimate environmental soil conditions. Despite widespread use of Ellenberg values in ecological research, the correlation between bioindicated values and actual values is often an implicit assumption rather than based on empirical evidence. Here, we correlate unadjusted and UK-adjusted Ellenberg values for soil moisture, pH, and nitrate in relation to direct environmental measures for 50 woodland sites in the UK, which were subject to repeat sampling. Our results show the accuracy of Ellenberg values is parameter specific; pH values were a good proxy for direct environmental measures but this was not true for soil moisture, when relationships were weak and non-significant. For nitrates, there were important seasonal differences, with a strong positive logarithmic relationship in the spring but a non-significant (and negative) correlation in summer. The UK-adjusted values were better than, or equivalent to, Ellenberg’s original ones, which had been quantified originally for Central Europe, in all cases. Somewhat surprisingly, unweighted values correlated with direct environmental measures better than did abundance-weighted ones. This suggests that the presence of rare plants can be highly important in accurate quantification of soil parameters and we recommend using an unweighted approach. However, site profiles created only using rare plants were inferior to profiles based on the whole plant community and thus cannot be used in isolation. We conclude that, for pH and nitrates, the Ellenberg system provides a useful estimate of actual conditions, but recalibration of moisture values should be considered along with the effect of seasonality on the efficacy of the system

    Unexpected long-range edge-to-forest interior environmental gradients

    No full text
    We examined the relationships between distance-to-edge and environmental factors inferred from mean plant indicator values across large distance-to-edge and patch size gradients. Floristic composition, landscape metrics and site variables (climate, soil and forest management) were collected on 19,989 plots in 1,801 forest patches in Northern France using the French National Forest Inventory. Statistical models were applied to mean plant indicator values (MIV) from Ellenberg and Ecoplant databases for soil pH, soil nitrogen (N), soil humidity (F), light (L) and air temperature (Ta) using distance-to-edge and forest patch size as predictors. The five mean indicator values significantly varied with distance-to-edge and MIV pH, N and Ta decreased over distances in excess of 500 m. Consistent very long edge-to-interior gradients were also detected for site variables. The distance-to-edge effect remained significant after controlling for site differences, especially for MIV pH and N. Significant edge-to-core gradients of MIV were detected over much larger ranges than previously recognised. Neither the presence of an ecological boundary between forest and the surrounding matrix, nor microclimate, soil or forest management heterogeneity within forest patches can fully explain this long edge-to-interior gradient observed in MIV. Two hypotheses are discussed for MIV pH and N: (1) soil eutrophication, due to atmospheric N deposition, which could occur deeper into forest-cores than previously acknowledged; (2) land use legacies, as the periphery of ancient forests is more often occupied by recent forests where former agricultural practices have irreversibly modified topsoil properties. Land use history data would help identify the drivers underlying these long-range edge gradients
    corecore