51 research outputs found

    Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe

    Get PDF
    Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ~100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ~140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales

    Single-molecule spectroscopy of fluorescent proteins

    Full text link

    New twists on photoswitchable proteins

    No full text

    Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration.

    No full text
    We demonstrate that photoswitchable markers enable fluorescence fluctuation spectroscopy at high molecular concentration. Reversible photoswitching allows precise control of the density of fluorescing entities, because the equilibrium between the fluorescent ON- and the dark OFF-state can be shifted through optical irradiation at a specific wavelength. Depending on the irradiation intensity, the concentration of the ON-state markers can be up to 1,000 times lower than the actual concentration of the labeled molecular entity. Photoswitching expands the range of single-molecule detection based experiments such as fluorescence fluctuation spectroscopy to large entity concentrations in the micromolar range

    Nanoscale separation of molecular species based on their rotational mobility.

    Get PDF
    We combine far-field fluorescence nanoscopy through serialized recording of switchable emitters with polarization-sensitive fluorescence detection. In addition to imaging with nanoscale spatial resolution, this technique allows determination of the fluorescence anisotropy of each detected dipole emitter and thus an estimate of its rotational mobility. Sub-populations of fluorescent markers can thus be separated based on their interaction with the sample. We applied this new functional nanoscopy to imaging of living mammalian cells

    A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching.

    No full text
    Photoswitchable fluorescent proteins have enabled new approaches for imaging cells, but their utility has been limited either because they cannot be switched repeatedly or because the wavelengths for switching and fluorescence imaging are strictly coupled. We report a bright, monomeric, reversibly photoswitchable variant of GFP, Dreiklang, whose fluorescence excitation spectrum is decoupled from that for optical switching. Reversible on-and-off switching in living cells is accomplished at illumination wavelengths of ∼365 nm and ∼405 nm, respectively, whereas fluorescence is elicited at ∼515 nm. Mass spectrometry and high-resolution crystallographic analysis of the same protein crystal in the photoswitched on- and off-states demonstrate that switching is based on a reversible hydration/dehydration reaction that modifies the chromophore. The switching properties of Dreiklang enable far-field fluorescence nanoscopy in living mammalian cells using both a coordinate-targeted and a stochastic single molecule switching approach
    corecore