41 research outputs found

    Electrophysiological dynamics of Chinese phonology during visual word recognition in Chinese-English bilinguals

    Get PDF
    Silent word reading leads to the activation of orthographic (spelling), meaning, as well as phonological (sound) information. For bilinguals, native language information can also be activated automatically when they read words in their second language. For example, when Chinese-English bilinguals read words in their second language (English), the phonology of the Chinese translations is automatically activated. Chinese phonology, however, consists of consonants and vowels (segmental) and tonal information. To what extent these two aspects of Chinese phonology are activated is yet unclear. Here, we used behavioural measures, event-related potentials and oscillatory EEG to investigate Chinese segmental and tonal activation during word recognition. Evidence of Chinese segmental activation was found when bilinguals read English words (faster responses, reduced N400, gamma-band power reduction) and when they read Chinese words (increased LPC, gamma-band power reduction). In contrast, evidence for Chinese tonal activation was only found when bilinguals read Chinese words (gamma-band power increase). Together, our converging behavioural and electrophysiological evidence indicates that Chinese segmental information is activated during English word reading, whereas both segmental and tonal information are activated during Chinese word reading. Importantly, gamma-band oscillations are modulated differently by tonal and segmental activation, suggesting independent processing of Chinese tones and segments

    A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Get PDF

    Seasonal changes in burrow geometry of the common mole rat (Rodentia: Bathyergidae)

    Get PDF
    Sociality in mole rats has been suggested to have evolved as a response to the widely dispersed food resources and the limited burrowing opportunities that result from sporadic rainfall events. In the most arid regions, individual foraging efficiency is reduced and energetic constraints increase. In this study, we investigate seasonal differences in burrow architecture of the social Cryptomys hottentotus hottentotus in a mesic region. We describe burrow geometry in response to seasonal weather conditions for two seasons (wet and dry). Interactions occurred between seasons and colony size for the size of the burrow systems, but not the shape of the burrow systems. The fractal dimension values of the burrow systems did not differ between seasons. Thus, the burrow complexity was dependent upon the number of mole rats present in the social group
    corecore