30 research outputs found

    Antiviral activity of the mineralocorticoid receptor NR3C2 against Herpes simplex virus Type 1 (HSV-1) infection

    Get PDF
    Abstract Analysis of a genome-scale RNA interference screen of host factors affecting herpes simplex virus type 1 (HSV-1) revealed that the mineralocorticoid receptor (MR) inhibits HSV-1 replication. As a ligand-activated transcription factor the MR regulates sodium transport and blood pressure in the kidney in response to aldosterone, but roles have recently been elucidated for the MR in other cellular processes. Here, we show that the MR and other members of the mineralocorticoid signalling pathway including HSP90 and FKBP4, possess anti-viral activity against HSV-1 independent of their effect on sodium transport, as shown by sodium channel inhibitors. Expression of the MR is upregulated upon infection in an interferon (IFN) and viral transcriptional activator VP16-dependent fashion. Furthermore, the MR and VP16, together with the cellular co-activator Oct-1, transactivate the hormone response element (HRE) present in the MR promoter and those of its transcriptional targets. As the MR induces IFN expression, our data suggests the MR is involved in a positive feedback loop that controls HSV-1 infection

    A Wide Extent of Inter-Strain Diversity in Virulent and Vaccine Strains of Alphaherpesviruses

    Get PDF
    Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution

    Cross Adaptation - Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia

    Get PDF
    To prepare for extremes of heat, cold or low partial pressures of O2, humans can undertake a period of acclimation or acclimatization to induce environment specific adaptations e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. Whilst these strategies are effective, they are not always feasible, due to logistical impracticalities. Cross adaptation is a term used to describe the phenomenon whereby alternative environmental interventions e.g. HA, or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate intensity exercise at altitude via adaptations allied to improved oxygen delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on oxygen delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross tolerance. The effects of CA on markers of cross tolerance is an area requiring further investigation. Because much of the evidence relating to cross adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles

    Direct and sensitive detection of a human virus by rupture event scanning

    No full text
    We have developed a sensitive, economical method that directly detects viruses by making use of the interaction between type 1 herpes simplex virus (HSV1) and specific antibodies covalently attached to the oscillating surface of a quartz crystal microbalance (QCM). The virions were detached from the surface by monotonously increasing the amplitude of oscillation of the QCM, while using the QCM to sensitively detect the acoustic noise produced when the interactions were broken. We term this process rupture event scanning (REVS). The method is quantitative over at least six orders of magnitude, and its sensitivity approaches detection of a single virus particle

    Maximum skin hyperaemia induced by local heating: possible mechanisms

    No full text
    Background: Maximum skin hyperaemia (MH) induced by heating skin to 42°C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. Methods: MH was achieved by local heating of skin to 42-43°C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). Results: MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. Conclusion: NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating
    corecore