8 research outputs found

    Juvenile Hormone (JH) Esterase of the Mosquito Culex quinquefasciatus Is Not a Target of the JH Analog Insecticide Methoprene

    Get PDF
    Juvenile hormones (JHs) are essential sesquiterpenes that control insect development and reproduction. JH analog (JHA) insecticides such as methoprene are compounds that mimic the structure and/or biological activity of JH. In this study we obtained a full-length cDNA, cqjhe, from the southern house mosquito Culex quinquefasciatus that encodes CqJHE, an esterase that selectively metabolizes JH. Unlike other recombinant esterases that have been identified from dipteran insects, CqJHE hydrolyzed JH with specificity constant (kcat/KM ratio) and Vmax values that are common among JH esterases (JHEs). CqJHE showed picomolar sensitivity to OTFP, a JHE-selective inhibitor, but more than 1000-fold lower sensitivity to DFP, a general esterase inhibitor. To our surprise, CqJHE did not metabolize the isopropyl ester of methoprene even when 25 pmol of methoprene was incubated with an amount of CqJHE that was sufficient to hydrolyze 7,200 pmol of JH to JH acid under the same assay conditions. In competition assays in which both JH and methoprene were available to CqJHE, methoprene did not show any inhibitory effects on the JH hydrolysis rate even when methoprene was present in the assay at a 10-fold higher concentration relative to JH. Our findings indicated that JHE is not a molecular target of methoprene. Our findings also do not support the hypothesis that methoprene functions in part by inhibiting the action of JHE

    Rotational and Other Types of Viscometers

    No full text

    The aerodynamic behaviour of volcanic aggregates

    No full text
    A large proportion of solid material transported within the atmosphere during volcanic eruptions consists of particles less than 500 mum in diameter. The majority of these particles become incorporated into a wide range of aggregate types, the aerodynamic behaviour of which has not been determined by either direct observation or in the laboratory. In the absence of such data, theoretical models of fallout from volcanic plumes make necessarily crude assumptions about aggregate densities and fall velocities. Larger volcanic ejecta often consists of pumice of lower than bulk density. Experimental data are presented for the fall velocities of porous aggregates and single particles, determined in systems analogous to that of ejecta falling from a volcanic plume. It is demonstrated that the fall of aggregates may be modelled in identical fashion to single particles by using a reduced aggregate density dependent on the porosity, and a size corresponding to an enclosing sphere. Particles incorporated into aggregates attain a substantially higher fall velocity than single particles. This is due to the larger physical dimensions of the aggregate, which overcomes the effect of lower aggregate density. Additionally, the internal porosity of the aggregate allows some flow of fluid through the aggregate and this results in a small increase in fall velocity. The increase in fall velocity of particles incorporated into aggregates, rather than falling individually, results in the enhanced removal of fine material from volcanic plumes

    The Non-Linear Field Theories of Mechanics

    No full text
    corecore