35 research outputs found

    Isotopic signature in isolated south-western populations of European brown bear (Ursus arctos)

    Get PDF
    Stable isotope analysis of animal tissue samples is increasingly used to study the trophic ecology of target species. The isotopic signatures respond to the type of diet, but also to the environmental conditions of their habitat. In the case of omnivorous, seasonal or opportunistic feeding species, the interpretation of isotopic values is more complex, as it is largely determined by food selection, either due to individual choice or because of availability. We analysed C and N isotopes in brown bear (Ursus arctos) hair from four isolated populations of south-western Europe (Cantabrian, Pyrenees, Central Apennines and Alpine) accounting for the geographical and climatic differences among the four areas. We found inter-population differences in isotopic signatures that cannot be attributed to climatic differences alone, indicating that at least some bears from relatively higher altitude populations experiencing higher precipitation (Pyrenees) show a greater consumption of animal foods than those from lower altitudes (Cantabrian and Apennines). The quantification of isotopic niche space using Layman's metrics identified significant similarities between the Cantabrian and Central Apennine samples that markedly differ from the Pyrenean and Alpine. Our study provides a baseline to allow further comparisons in isotopic niche spaces in a broad ranged omnivorous mammal, whose European distribution requires further conservation attention especially for southern isolated populations

    Isotopic signature in isolated south-western populations of European brown bear (Ursus arctos)

    Get PDF
    Abstract Stable isotope analysis of animal tissue samples is increasingly used to study the trophic ecology of target species. The isotopic signatures respond to the type of diet, but also to the environmental conditions of their habitat. In the case of omnivorous, seasonal or opportunistic feeding species, the interpretation of isotopic values is more complex, as it is largely determined by food selection, either due to individual choice or because of availability. We analysed C and N isotopes in brown bear (Ursus arctos) hair from four isolated populations of south-western Europe (Cantabrian, Pyrenees, Central Apennines and Alpine) accounting for the geographical and climatic differences among the four areas. We found inter-population differences in isotopic signatures that cannot be attributed to climatic differences alone, indicating that at least some bears from relatively higher altitude populations experiencing higher precipitation (Pyrenees) show a greater consumption of animal foods than those from lower altitudes (Cantabrian and Apennines). The quantification of isotopic niche space using Layman’s metrics identified significant similarities between the Cantabrian and Central Apennine samples that markedly differ from the Pyrenean and Alpine. Our study provides a baseline to allow further comparisons in isotopic niche spaces in a broad ranged omnivorous mammal, whose European distribution requires further conservation attention especially for southern isolated populations

    Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode

    Get PDF
    BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding

    High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites

    Get PDF
    Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well

    Tshz1 regulates pancreatic beta cell maturation.

    No full text
    International audienceThe homeodomain transcription factor Pdx1 controls pancreas organogenesis, specification of endocrine pancreas progenitors, and the postnatal growth and function of pancreatic β-cells. Pdx1 expression in human-derived stem cells is used as a marker for induced pancreatic precursor cells. Unfortunately, the differentiation efficiency of human pancreatic progenitors into functional β-cells is poor. In order to gain insight into the genes that Pdx1 regulates during differentiation, we performed Pdx1 chromatin immunoprecipitation followed by high-throughput sequencing of embryonic day (e) 13.5 and 15.5 mouse pancreata. From this, we identified the transcription factor Teashirt zinc finger 1 (Tshz1) as a direct Pdx1 target. Tshz1 is expressed in developing and adult insulin- and glucagon-positive cells. Endocrine cells are properly specified in Tshz1-null embryos, but critical regulators of β-cell (Pdx1 and Nkx6.1) and α-cell (MafB and Arx) formation and function are downregulated. Adult Tshz1(+/-) mice display glucose intolerance due to defects in glucose-stimulated insulin secretion associated with reduced Pdx1 and Clec16a expression in Tshz1(+/-) islets. Lastly, we demonstrate that TSHZ1 levels are reduced in human islets of donors with type 2 diabetes. Thus, we position Tshz1 in the transcriptional network of maturing β-cells and suggest that its dysregulation could contribute to the islet phenotype of human type 2 diabetes
    corecore