27 research outputs found

    Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of <it>Plasmodium </it><it>falciparum </it>through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration.</p> <p>Results</p> <p>Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle.</p> <p>Conclusions</p> <p>We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c), a Zinc finger transcription factor (PFL0465c) both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c).</p

    Immunophenotypic predictive profiling of BRCA1-associated breast cancer

    Get PDF
    The immunophenotypic predictive profile of BRCA1-associated cancers including major predictive markers, i.e., PARP-1, EGFR, c-kit, HER-2, and steroid hormones (ER/PR) that may have therapeutic relevance has not yet been reported in a comprehensive study. Using immunohistochemistry, we examined the expression of these proteins in a large cohort of BRCA1-associated breast cancers. PARP-1 immunoreactivity was found in 81.9%, EGFR in 43.6%, ER/PR in 17.9%, c-kit in 14.7%, and overexpression of HER-2 in 3.6% of cancers. For all markers studied, 8.2% of tumors were negative. Expression of only one predictive marker was found in 29.7% of cancers, and most frequently, it was PARP-1 (20.8%). In 62.1% of tumors, more than one predictive marker was expressed: PARP-1 and EGFR in 30.4%, PARP-1, and hormone receptors in 13.3% and PARP-1 with c-kit in 7.5% of all tumors. Coexpression of two or more other predictive markers was rare. There were significant differences in the median age at diagnosis of BRCA1-associated cancer between patients with ER+ vs. ER− and grades 1–2 vs. grade 3 tumors. These results demonstrate that BRCA1-associated cancers differ with respect to expression of proteins that are regarded as targets for specific therapies and that 92% of patients with BRCA1-associated cancers may benefit from one or several options for specific therapy (in addition to DNA damaging agents, e.g., cisplatin). About 8% of cancers which do not express therapeutic target proteins may not respond to such therapies. Knowledge of the immunophenotypic predictive profile may help with the recruitment of patients for trials of targeted therapies

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    Assembly, organization, and function of the COPII coat

    Get PDF
    A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states

    Genetic testing for familial/hereditary breast cancer—comparison of guidelines and recommendations from the UK, France, the Netherlands and Germany

    No full text
    In this review, the national guidelines and recommendations for genetic testing for familial/hereditary breast cancer from the UK, France, the Netherlands and Germany were evaluated as to the inclusion criteria for genetic testing. In all four countries, access to genetic testing relies basically on the family history of breast and ovarian cancer. Similarities are obvious for most selection criteria. All four guidelines recommend embedding genetic testing within a framework of genetic counselling, and all agree to perform genetic testing first in an affected person. However, there are differences regarding the thresholds based on certain familial constellations, detailed description of selection criteria, the degree of relatedness between affected individuals and the counsellee, the age of diagnosis, the individual history of early onset breast cancer, bilateral breast cancer, the tumour morphology or the access to intensified surveillance. These differences and open questions not covered by the guidelines, e.g. on how to deal with phenocopies, unclassified variants, genetic variants in newly identified breast cancer susceptibility genes or with family constellations not fitting the criteria, are discussed. New evidence is usually slowly integrated into the guidelines. An exchange process towards the harmonization of the guidelines will ensure high quality health care across Europe
    corecore