177 research outputs found

    Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings

    Get PDF
    Background: In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. Results: Cellulase recycling was analyzed on Recycled Paper Sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 ºC), nevertheless its performance at moderate temperatures (40ºC) was slightly superior to other cocktails (ACCELLERASE®1500 and Cellic®CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88 % of final activity at the end of the process. A Central Composite Design studied the influence of solids concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/ gcellulose had no significant effect on sugars production, suggesting that 22 % solids and 20 FPU/gcellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain steady levels of enzyme activity with only 50 % of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81 %) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4 and 3.8 fold, respectively). Conclusions: Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.This work had the fnancial support of the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the MultiBiorefnery project (POCI-01-0145-FEDER-016403). Furthermore, FCT equally supported the Ph.D. grant to DG (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    SEASONAL DISTRIBUTION OF MALARIA VECTORS (DIPTERA: CULICIDAE) IN RURAL LOCALITIES OF PORTO VELHO, RONDÔNIA, BRAZILIAN AMAZON

    Get PDF
    We conducted a survey of the malaria vectors in an area where a power line had been constructed, between the municipalities of Porto Velho and Rio Branco, in the states of Rondônia and Acre, respectively. The present paper relates to the results of the survey of Anopheles fauna conducted in the state of Rondônia. Mosquito field collections were performed in six villages along the federal highway BR 364 in the municipality of Porto Velho, namely Porto Velho, Jaci Paraná, Mutum Paraná, Vila Abunã, Vista Alegre do Abunã, and Extrema. Mosquito captures were performed at three distinct sites in each locality during the months of February, July, and October 2011 using a protected human-landing catch method; outdoor and indoor captures were conducted simultaneously at each site for six hours. In the six sampled areas, we captured 2,185 mosquitoes belonging to seven Anopheles species. Of these specimens, 95.1% consisted of Anopheles darlingi, 1.8% An. triannulatus l.s., 1.7% An. deaneorum, 0.8% An. konderi l.s., 0.4 An. braziliensis, 0.1% An. albitarsis l.s., and 0.1% An. benarrochi. An. darlingi was the only species found in all localities; the remaining species occurred in sites with specific characteristics

    Cellulase recycling in biorefineriesis : is it possible?

    Get PDF
    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.Financial support from FEDER and Fundação para a Ciência e a Tecnologia (FCT): GlycoCBMs Project PTDC/AGR-FOR/3090/2012–FCOMP-01-0124- FEDER-027948 and Strategic Project PEst-OE/EQB/LA0023/2013, Project BBioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028 Cofunded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER and the PhD grant to DG (SFRH/BD/88623/ 2012) and ACR (SFRH/BD/89547/2012)

    Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed eucalyptus globulus wood

    Get PDF
    By-products resulting from lignocellulosics pretreatment affect the digestibility of resulting whole slurries, but this can be minimized by additives supplementation. In this work, a family 3 carbohydrate-binding module (CBM3), recombinantly produced from Escherichia coli, was used as additive in the enzymatic hydrolysis of the whole slurry from autohydrolyzed Eucalyptus globulus wood (EGW). At the higher dosage used (30 mg/gsolids), CBM3 led to an increase in glucose yield from 75 to 89%. A similar result was obtained for bovine serum albumin (BSA) (11% increase), which has a well-documented additive effect. CBM3 had no effect on the non-productive binding of enzymes, since it could not bind to EGW lignin, while it rapidly bound to cellulose, as shown by fluorescence microscopy. CBM3 is a valid additive for enhanced lignocellulosic saccharification and a valuable alternative to costly additives (e.g. polyethylene glycol) as it can be affordably produced from heterologous bacterium, thus contributing to more cost-efficient biomass valorization bioprocesses.This work was developed under the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. The research leading to the reported results has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the project MultiBiorefinery (POCI-01–0145-FEDER-016403) and through grants to C. Oliveira (SFRH/BPD/110640/2015) and D. Gomes (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio
    corecore