8 research outputs found

    Efficacy of Quasi Agro Binding Fibre on the Hybrid Composite Used in Advance Application

    Get PDF
    The choice for natural fibre obtained from agricultural products is on the rise due to its solution to eco-friendly, environmental and improved mechanical properties concerns. Its abundant availability, low cost, emission reduction and adaptability to base material for composite make it a prime material for selection. This review explores diverse perspectives to the future trend of agro fibre in terms of the thermo-mechanical properties as it applies to advanced application in building structures. It is important to investigate the ecofriendliness of the products of composites from fibres in agricultural wastes so as to achieve a green and sustainable environment. This will come to fore by the combined efforts of both researchers and feedback from building stakeholders

    High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes

    Get PDF
    Understanding how the fruit microclimate affects ascorbate (AsA) biosynthesis, oxidation and recycling is a great challenge in improving fruit nutritional quality. For this purpose, tomatoes at breaker stage were harvested and placed in controlled environment conditions at different temperatures (12, 17, 23, 27 and 31 °C) and irradiance regimes (darkness or 150 µmol m(-2) s(-1)). Fruit pericarp tissue was used to assay ascorbate, glutathione, enzymes related to oxidative stress and the AsA/glutathione cycle and follow the expression of genes coding for 5 enzymes of the AsA biosynthesis pathway (GME, VTC2, GPP, L-GalDH, GLDH). The AsA pool size in pericarp tissue was significantly higher under light at temperatures below 27 °C. In addition, light promoted glutathione accumulation at low and high temperatures. At 12 °C, increased AsA content was correlated with the enhanced expression of all genes of the biosynthesis pathway studied, combined with higher DHAR and MDHAR activities and increased enzymatic activities related to oxidative stress (CAT and APX). In contrast, at 31 °C, MDHAR and GR activities were significantly reduced under light indicating that enzymes of the AsA/glutathione cycle may limit AsA recycling and pool size in fruit pericarp, despite enhanced expression of genes coding for AsA biosynthesis enzymes. In conclusion, this study confirms the important role of fruit microclimate in the regulation of fruit pericarp AsA content, as under oxidative conditions (12 °C, light) total fruit pericarp AsA content increased up to 71%. Moreover, it reveals that light and temperature interact to regulate both AsA biosynthesis gene expression in tomato fruits and AsA oxidation and recycling

    Oppia nitens

    No full text
    corecore