10 research outputs found

    Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on Hepatic Steatosis in Zucker Rats

    Get PDF
    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Leprfa/fa rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Leprfa/fa rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Leprfa/fa rats that received probiotics than in rats fed the placebo. Zucker-Leprfa/fa rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Leprfa/fa rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Leprfa/fa rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Leprfa/fa rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.Part of the research currently in progress in the authors' laboratory is funded by the company Hero Spain, S. A. through the grant #3545 managed by the Fundacion General Empresa-Universidad de Granada

    Development of chronic colitis is dependent on the cytokine MIF

    No full text
    The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohn's disease, these data suggested that MIF is a new target for intervention in Crohn's disease

    Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out?

    No full text
    For centuries, itch was categorized as a submodality of pain. Recent research over the last decade has led to the realization that itch is in fact a separate and distinct, albeit closely related, sensation. Chronic itch is a common complaint and has numerous etiologies. Various receptors (TRPA1, TRPV1, PAR2, gastrin-releasing peptide receptor (GRPR), Mas-related G proteins), secreted molecules (histamine, nerve growth factor (NGF), substance P (SP), proteases), and cytokines/chemokines (thymic stromal lymphopoietin (TSLP), IL-2, IL-4, IL-13, and IL-31) are implicated as mediators of chronic pruritus. While much remains unknown regarding the mechanisms of chronic itch, this much is certain: there is no singular cause of itch. Rather, itch is caused by a complex interface between skin, keratinocytes, cutaneous nerve fibers, pruritogenic molecules, and the peripheral and central nervous systems. Atopic dermatitis is one of the most itchy skin dermatoses and affects millions worldwide. The sensation of atopic itch is mediated by the interplay between epidermal barrier dysfunction, upregulated immune cascades, and the activation of structures in the central nervous system. Clinicians are in possession of an arsenal of different treatment options ranging from moisturizers, topical immunomodulators, topical anesthetic ion channel inhibitors, systemic immunomodulators, as well as oral drugs capable of reducing neural hypersensitization. Emerging targeted therapies on the horizon, such as dupilumab, promise to usher in a new era of highly specific and efficacious treatments. Alternative medicine, stress reduction techniques, and patient education are also important treatment modalities. This review will focus on the mediators of chronic pruritus mainly associated with atopic dermatitis (atopic itch), as well as numerous different therapeutic options.No Full Tex

    Maternal and fetal T cells in term pregnancy and preterm labor

    No full text
    corecore