22 research outputs found

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Revisiting simple methods to estimate drop size distributions: a novel approach based on infrared thermography

    No full text
    The infrared thermography has been successfully applied as a tool for high resolution imaging in different hydrological studies. This exploratory experimental study aimed at evaluating the possibility of using infrared thermography to determine the diameter of raindrops. Rain samples are collected on a pre-heated acrylic board, which is exposed to rain during an instant, and thermograms are recorded. The area of the thermal stains (“signatures” of the raindrops) emerging on the board is measured and converted to drop diameters, applying a calibration equation. Diameters of natural raindrops estimated using this technique were compared with laser disdrometer measurements; the Nash-Sutcliffe efficiency coefficient was used for evaluating the match between the resulting histograms of drop size distribution. Results confirm the usefulness of this simple technique for sizing and counting raindrops, although it is unsatisfactory in light rain or drizzle

    Evaluating Mulch Cover with Coir Dust and Cover Crop with Palma Cactus as Soil and Water Conservation Techniques for Semiarid Environments: Laboratory Soil Flume Study under Simulated Rainfall

    No full text
    This paper aims to investigate the performance of mulch cover with coir dust (Cocos nucifera L.) and cover crop with Palma cactus (Opuntia ficus indica Mill.) as soil and water conservation techniques, in a laboratory soil flume under simulated rainfall. Palma cactus plants oriented at 90 and 30 angles with the slope direction were considered. Simulations comprised uniform advanced and delayed rainfall patterns. Runo hydrographs and soil loss were monitored at the downstream end of the flume. Soil moisture and flow velocity were measured, and several hydraulic parameters of runo were estimated. Results show that both mulch cover with coir dust and cover crop with Palma cactus were e ective in reducing runo and soil loss and increasing soil moisture content, thus being both suitable soil and water conservation techniques for semiarid environments. Coir dust was more e ective than Palma cactus. Palma cactus oriented at a 90 angle was slightly more e ective than Palma cactus oriented at a 30 angle. Di erences between advanced and delayed rainfall patterns on the hydrological and erosive response were more pronounced for the mulch cover condition, where no runo and soil loss were observed at the downstream end of the flume for the advanced rainfall pattern

    LaGomiCs - Lagomorph Genomics Consortium: An International Collaborative Effort for Sequencing the Genomes of an Entire Mammalian Order

    No full text
    The order Lagomorpha comprises about 90 living species, divided in 2 families: the pikas (Family Ochotonidae), and the rabbits, hares, and jackrabbits (Family Leporidae). Lagomorphs are important economically and scientifically as major human food resources, valued game species, pests of agricultural significance, model laboratory animals, and key elements in food webs. A quarter of the lagomorph species are listed as threatened. They are native to all continents except Antarctica, and occur up to 5000 m above sea level, from the equator to the Arctic, spanning a wide range of environmental conditions. The order has notable taxonomic problems presenting significant difficulties for defining a species due to broad phenotypic variation, overlap of morphological characteristics, and relatively recent speciation events. At present, only the genomes of 2 species, the European rabbit (Oryctolagus cuniculus) and American pika (Ochotona princeps) have been sequenced and assembled. Starting from a paucity of genome information, the main scientific aim of the Lagomorph Genomics Consortium (LaGomiCs), born from a cooperative initiative of the European COST Action "A Collaborative European Network on Rabbit Genome Biology - RGBNet" and the World Lagomorph Society (WLS), is to provide an international framework for the sequencing of the genome of all extant and selected extinct lagomorphs. Sequencing the genomes of an entire order will provide a large amount of information to address biological problems not only related to lagomorphs but also to all mammals. We present current and planned sequencing programs and outline the final objective of LaGomiCs possible through broad international collaboration. © The American Genetic Association. 2016. All rights reserved
    corecore