11,925 research outputs found
A Coupled Oscillator Model for the Origin of Bimodality and Multimodality
Perhaps because of the elegance of the central limit theorem, it is often
assumed that distributions in nature will approach singly-peaked, unimodal
shapes reminiscent of the Gaussian normal distribution. However, many systems
behave differently, with variables following apparently bimodal or multimodal
distributions. Here we argue that multimodality may emerge naturally as a
result of repulsive or inhibitory coupling dynamics, and we show rigorously how
it emerges for a broad class of coupling functions in variants of the
paradigmatic Kuramoto model.Comment: 11 pages, 12 figure
Higher Order Methods for Simulations on Quantum Computers
To efficiently implement many-qubit gates for use in quantum simulations on
quantum computers we develop and present methods reexpressing exp[-i (H_1 + H_2
+ ...) \Delta t] as a product of factors exp[-i H_1 \Delta t], exp[-i H_2
\Delta t], ... which is accurate to 3rd or 4th order in \Delta t. The methods
we derive are an extended form of symplectic method and can also be used for
the integration of classical Hamiltonians on classical computers. We derive
both integral and irrational methods, and find the most efficient methods in
both cases.Comment: 21 pages, Latex, one figur
Coming Out of Crisis: Patient Experiences in Primary Care in New Orleans, Four Years Post-Katrina
Examines the network of neighborhood clinics funded with federal, state, and local money that emerged after Hurricane Katrina as a model for serving vulnerable populations. Looks at access, communication, chronic illnesses management, and preventive care
Evaluation of LANDSAT MSS vs TM simulated data for distinguishing hydrothermal alteration
The LANDSAT Follow-On (LFO) data was simulated to demonstrate the mineral exploration capability of this system for segregating different types of hydrothermal alteration and to compare this capability with that of the existing LANDSAT system. Multispectral data were acquired for several test sites with the Bendix 24-channel MSDS scanner. Contrast enhancements, band ratioing, and principal component transformations were used to process the simulated LFO data for analysis. For Red Mountain, Arizona, the LFO data allowed identification of silicified areas, not identifiable with LANDSAT 1 and 2 data. The improved LFO resolution allowed detection of small silicic outcrops and of a narrow silicified dike. For Cuprite - Ralston, Nevada, the LFO spectral bands allowed discrimination of argillic and opalized altered areas; these could not be spectrally discriminated using LANDSAT 1 and 2 data. Addition of data from the 1.3- and 2.2- micrometer regions allowed better discriminations of hydrothermal alteration types
Low zinc status and absorption exist in infants with jejunostomies or ileostomies which persists after intestinal repair.
There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer stable isotope technique at two different time points when possible. The first study was conducted when the subject was receiving maximal tolerated feeds enterally while the ostomy remained in place. A second study was performed as soon as feasible after full feeds were achieved after intestinal repair. We found biochemical evidence of deficiencies of both zinc and copper in infants with small intestinal ostomies at both time points. Fractional zinc absorption with an ostomy in place was 10.9% ± 5.3%. After reanastamosis, fractional zinc absorption was 9.4% ± 5.7%. Net zinc balance was negative prior to reanastamosis. In conclusion, our data demonstrate that infants with a jejunostomy or ileostomy are at high risk for zinc and copper deficiency before and after intestinal reanastamosis. Additional supplementation, especially of zinc, should be considered during this time period
Tunable Oscillations in the Purkinje Neuron
In this paper, we study the dynamics of slow oscillations in Purkinje neurons
in vitro, and derive a strong association with a forced parametric oscillator
model. We demonstrate the precise rhythmicity of the oscillations in Purkinje
neurons, as well as a dynamic tunability of this oscillation using a
photo-switchable compound. We show that this slow oscillation can be induced in
every Purkinje neuron, having periods ranging between 10-25 seconds. Starting
from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be
externally modulated, and that the neurons will return to their intrinsic
firing frequency after the forced oscillation is concluded. These results
signify an additional functional role of tunable oscillations within the
cerebellum, as well as a dynamic control of a time scale in the brain in the
range of seconds.Comment: 12 pages, 5 figure
Recommended from our members
Perturbations in neuroinflammatory pathways are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors.
Paclitaxel is a common chemotherapy drug associated with the development of chronic paclitaxel-induced peripheral neuropathy (PIPN). PIPN is associated with neuroinflammatory mechanisms in pre-clinical studies. Here, we evaluated for differential gene expression (DGE) in peripheral blood between breast cancer survivors with and without PIPN and for neuroinflammatory (NI) related signaling pathways and whole-transcriptome profiles from other experiments. Pathway impact analysis identified 8 perturbed NI related pathways. Expression profile analysis found 15 experiments having similar whole-transcriptome profiles of DGE related to neuroinflammation and PIPN. These findings suggest that perturbations in pathways associated with neuroinflammation are found in cancer survivors with PIPN
Quantum Computational Complexity in the Presence of Closed Timelike Curves
Quantum computation with quantum data that can traverse closed timelike
curves represents a new physical model of computation. We argue that a model of
quantum computation in the presence of closed timelike curves can be formulated
which represents a valid quantification of resources given the ability to
construct compact regions of closed timelike curves. The notion of
self-consistent evolution for quantum computers whose components follow closed
timelike curves, as pointed out by Deutsch [Phys. Rev. D {\bf 44}, 3197
(1991)], implies that the evolution of the chronology respecting components
which interact with the closed timelike curve components is nonlinear. We
demonstrate that this nonlinearity can be used to efficiently solve
computational problems which are generally thought to be intractable. In
particular we demonstrate that a quantum computer which has access to closed
timelike curve qubits can solve NP-complete problems with only a polynomial
number of quantum gates.Comment: 8 pages, 2 figures. Minor changes and typos fixed. Reference adde
- …
