23,528 research outputs found

    Macroscopic thermodynamics of equilibrium characterized by power-law canonical distributions

    Full text link
    Macroscopic thermodynamics of equilibrium is constructed for systems obeying power-law canonical distributions. With this, the connection between macroscopic thermodynamics and microscopic statistical thermodynamics is generalized. This is complementary to the Gibbs theorem for the celebrated exponential canonical distributions of systems in contact with a heat bath. Thereby, a thermodynamic basis is provided for power-law phenomena ubiquitous in nature.Comment: 12 page

    Stability of Tsallis antropy and instabilities of Renyi and normalized Tsallis entropies: A basis for q-exponential distributions

    Full text link
    The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution, are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of maximum entropy, they can apparently be derived from three different generalized entropies: the Renyi entropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the q-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown that, among the three, the Tsallis entropy is stable and can provide an entropic basis for the q-exponential distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.Comment: 20 pages, no figures, the disappeared "primes" on the distributions are added. Also, Eq. (65) is correcte

    B Physics at SLD

    Get PDF
    We review recent BB physics results obtained in polarized e+ee^+ e^- interactions at the SLC by the SLD experiment. The excellent 3-D vertexing capabilities of SLD are exploited to extract precise \bu and \bd lifetimes, as well as measurements of the time evolution of Bd0Bd0ˉB^0_d - \bar{B^0_d} mixing.Comment: 7 pages, 4 figure

    Dynamical evolution of clustering in complex network of earthquakes

    Full text link
    The network approach plays a distinguished role in contemporary science of complex systems/phenomena. Such an approach has been introduced into seismology in a recent work [S. Abe and N. Suzuki, Europhys. Lett. 65, 581 (2004)]. Here, we discuss the dynamical property of the earthquake network constructed in California and report the discovery that the values of the clustering coefficient remain stationary before main shocks, suddenly jump up at the main shocks, and then slowly decay following a power law to become stationary again. Thus, the network approach is found to characterize main shocks in a peculiar manner.Comment: 10 pages, 3 figures, 1 tabl

    Geometry of escort distributions

    Full text link
    Given an original distribution, its statistical and probabilistic attributs may be scanned by the associated escort distribution introduced by Beck and Schlogl and employed in the formulation of nonextensive statistical mechanics. Here, the geometric structure of the one-parameter family of the escort distributions is studied based on the Kullback-Leibler divergence and the relevant Fisher metric. It is shown that the Fisher metric is given in terms of the generalized bit-variance, which measures fluctuations of the crowding index of a multifractal. The Cramer-Rao inequality leads to the fundamental limit for precision of statistical estimate of the order of the escort distribution. It is also quantitatively discussed how inappropriate it is to use the original distribution instead of the escort distribution for calculating the expectation values of physical quantities in nonextensive statistical mechanics.Comment: 12 pages, no figure

    Scale-invariant statistics of period in directed earthquake network

    Full text link
    A new law regarding structure of the earthquake networks is found. The seismic data taken in California is mapped to a growing directed network. Then, statistics of period in the network, which implies that after how many earthquakes an earthquake returns to the initial location, is studied. It is found that the period distribution obeys a power law, showing the fundamental difficulty of statistical estimate of period.Comment: 11 pages including 3 figure

    Microcanonical Foundation for Systems with Power-Law Distributions

    Full text link
    Starting from microcanonical basis with the principle of equal a priori probability, it is found that, besides ordinary Boltzmann-Gibbs theory with the exponential distribution, a theory describing systems with power-law distributions can also be derived.Comment: 9 page

    Nonadditive measure and quantum entanglement in a class of mixed states of N^n-system

    Full text link
    Through the generalization of Khinchin's classical axiomatic foundation, a basis is developed for nonadditive information theory. The classical nonadditive conditional entropy indexed by the positive parameter q is introduced and then translated into quantum information. This quantity is nonnegative for classically correlated states but can take negative values for entangled mixed states. This property is used to study quantum entanglement in the parametrized Werner-Popescu-like state of an N^n-system, that is, an n-partite N-level system. It is shown how the strongest limitation on validity of local realism (i.e., separability of the state) can be obtained in a novel manner
    corecore