The q-exponential distributions, which are generalizations of the
Zipf-Mandelbrot power-law distribution, are frequently encountered in complex
systems at their stationary states. From the viewpoint of the principle of
maximum entropy, they can apparently be derived from three different
generalized entropies: the Renyi entropy, the Tsallis entropy, and the
normalized Tsallis entropy. Accordingly, mere fittings of observed data by the
q-exponential distributions do not lead to identification of the correct
physical entropy. Here, stabilities of these entropies, i.e., their behaviors
under arbitrary small deformation of a distribution, are examined. It is shown
that, among the three, the Tsallis entropy is stable and can provide an
entropic basis for the q-exponential distributions, whereas the others are
unstable and cannot represent any experimentally observable quantities.Comment: 20 pages, no figures, the disappeared "primes" on the distributions
are added. Also, Eq. (65) is correcte