The generalized zeroth law of thermodynamics indicates that the physical
temperature in nonextensive statistical mechanics is different from the inverse
of the Lagrange multiplier, beta. This leads to modifications of some of
thermodynamic relations for nonextensive systems. Here, taking the first law of
thermodynamics and the Legendre transform structure as the basic premises, it
is found that Clausius definition of the thermodynamic entropy has to be
appropriately modified, and accordingly the thermodynamic relations proposed by
Tsallis, Mendes and Plastino [Physica A 261 (1998) 534] are also to be
rectified. It is shown that the definition of specific heat and the equation of
state remain form invariant. As an application, the classical gas model is
reexamined and, in marked contrast with the previous result obtained by Abe
[Phys. Lett. A 263 (1999) 424: Erratum A 267 (2000) 456] using the unphysical
temperature and the unphysical pressure, the specific heat and the equation of
state are found to be similar to those in ordinary extensive thermodynamics.Comment: 17 pages. The discussion about the Legendre transform structure is
modified and some additional comments are mad