14 research outputs found

    Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein

    No full text
    The Vip3Aa protein is an insecticidal protein secreted by Bacillus thuringiensis during the vegetative stage of growth. The activity of this protein has been tested after different steps/protocols of purification using Spodoptera frugiperda as a control insect. The results showed that the Vip3Aa protoxin was stable and retained full toxicity after being subjected to common biochemical steps used in protein purification. Bioassays with the protoxin in S. frugiperda and S. exigua showed pronounced differences in LC50 values when mortality was measured at 7 vs. 10 d. At 7 d most live larvae were arrested in their development. LC50 values of \u201cfunctional mortality\u201d (dead larvae plus larvae remaining in the first instar), measured at 7 d, were similar or even lower than the LC50 values of mortality at 10 d. This strong growth inhibition was not observed when testing the trypsin-activated protein (62 kDa) in either species. S. exigua was less susceptible than S. frugiperda to the protoxin form, with LC50 values around 10-fold higher. However, both species were equally susceptible to the trypsin-activated form. Processing of Vip3Aa protoxin to the activated form was faster with S. frugiperda midgut juice than with S. exigua midgut juice. The results strongly suggest that the differences in the rate of activation of the Vip3Aa protoxin between both species are the basis for the differences in susceptibility towards the protoxin form

    Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin

    No full text
    BUPM95 is a Bacillus thuringiensis subsp. kurstaki strain producing the Vip3Aa16 toxin with an interesting insecticidal activity against the Lepidopteran larvae Ephestia kuehniella. Study of different steps in the mode of action of this Vegetative Insecticidal Protein on the Mediterranean flour moth (E. kuehniella) was carried out in the aim to investigate the origin of the higher susceptibility of this insect to Vip3Aa16 toxin compared to that of the Egyptian cotton leaf worm Spodoptera littoralis. Using E. kuehniella gut juice, protoxin proteolysis generated a major band corresponding to the active toxin and another band of about 22kDa, whereas the activation of Vip3Aa16 by S. littoralis gut juice proteases generated less amount of the 62kDa active form and three other proteolysis products. As demonstrated by zymogram analysis, the difference in proteolysis products was due to the variability of proteases in the two gut juices larvae. The study of the interaction of E. kuehniella BBMV with biotinylated Vip3Aa16 showed that this toxin bound to a putative receptor of 65kDa compared to the 55 and 100kDa receptors recognized in S. littoralis BBMV. The histopathological observations demonstrated similar damage caused by the toxin in the two larvae midguts. These results demonstrate that the step of activation, mainly, is at the origin of the difference of susceptibility of these two larvae towards B. thuringiensis Vip3Aa16 toxi
    corecore