7,369 research outputs found

    Reduced Fine-Tuning in Supersymmetry with R-parity violation

    Get PDF
    Both electroweak precision measurements and simple supersymmetric extensions of the standard model prefer a mass of the Higgs boson less than the experimental lower limit of 114 GeV. We show that supersymmetric models with R parity violation and baryon number violation have a significant range of parameter space in which the Higgs dominantly decays to six jets. These decays are much more weakly constrained by current LEP analyses and would allow for a Higgs mass near that of the ZZ. In general, lighter scalar quark and other superpartner masses are allowed and the fine-tuning typically required to generate the measured scale of electroweak symmetry breaking is ameliorated. The Higgs would potentially be discovered at hadron colliders via the appearance of new displaced vertices. The lightest neutralino could be discovered by a scan of vertex-less events LEP I data.Comment: 5 pages, 2 figures. Significant detail added to the arguments regarding LEP limits - made more quantitative. Better figures used, plotting more physical quantities. Typos corrected and references updated. Conclusions unchange

    Searches for Long-lived Particles at the Tevatron Collider

    Full text link
    Several searches for long-lived particles have been performed using data from p-pbar collisions from Run II at the Tevatron. In most cases, new analysis techniques have been developed to carry out each search and/or estimate the backgrounds. These searches expand the discovery potential of the CDF and D0 experiments to new physics that may have been missed by traditional search techniques. This review discusses searches for (1) neutral, long-lived particles decaying to muons, (2) massive, neutral, long-lived particles decaying to a photon and missing energy, (3) stopped gluinos, and (4) charged massive stable particles. It summarizes some of the theoretical and experimental motivations for such searches.Comment: submitted to Mod. Phys. Lett.

    Single and Pair Production of Doubly Charged Higgs Bosons at Hadron Colliders

    Full text link
    Current searches for doubly charged Higgs bosons (H^{\pm\pm}) at the Fermilab Tevatron are sensitive to single production of H^{\pm\pm}, although the pair production mechanism q\bar q\to H^{++}H^{--} is assumed to be dominant. In the context of a Higgs Triplet Model we study the mechanism q'\bar q\to H^{\pm\pm}H^{\mp} at the Tevatron and CERN Large Hadron Collider, and show that its inclusion can significantly improve the search potential for H^{\pm\pm}. Moreover, assuming that the neutrino mass is generated solely by the triplet field Yukawa coupling to leptons, we compare the branching ratios of H^{\pm\pm}\to l^\pm l^\pm and H^{\pm\pm}\to H^\pm W^* for the cases of a normal hierarchical, inverted hierarchical and degenerate neutrino mass spectrum.Comment: 17 pages, 15 figures, references added, version to appear in PR

    Inclusive B-Meson Production at the LHC in the GM-VFN Scheme

    Full text link
    We calculate the next-to-leading-order cross section for the inclusive production of B mesons in pp collisions in the general-mass variable-flavor-number scheme, an approach which takes into account the finite mass of the b quarks. We use realistic evolved non-perturbative fragmentation functions obtained from fits to e+e- data and compare results for the transverse-momentum and rapidity distributions at a center-of-mass energy of 7 TeV with recent data from the CMS Collaboration. We find good agreement, in particular at large values of pT.Comment: Minor changes to the text, accepted for publication in Phys. Rev.

    Discrimination of SUSY breaking models using single-photon processes at future e+e- linear colliders

    Full text link
    We examine the single-photon processes in the frame work of supersymmetric models at future e+e- linear colliders. According to the recent experimental achievement, the optimistic polarization degrees for both electron and positron beams are taken into account to enhance the signal-to-noise ratio revealing the observable difference between supersymmetry breaking models. The minimal supergravity model and the minimal SU(5) grand unified model in gaugino mediation have been examined as examples. We see that after several years of accummulating data, the difference of the number of single-photon events between the two models received from the collider would be in excess of three times the statistical error, providing us the possibility to probe which model would be realized in nature. The result is well suitable for the future running of the International Linear Collider.Comment: 14 pages, 4 figures, version to be published in Mod. Phys. Lett.

    An effective mass theorem for the bidimensional electron gas in a strong magnetic field

    Full text link
    We study the limiting behavior of a singularly perturbed Schr\"odinger-Poisson system describing a 3-dimensional electron gas strongly confined in the vicinity of a plane (x,y)(x,y) and subject to a strong uniform magnetic field in the plane of the gas. The coupled effects of the confinement and of the magnetic field induce fast oscillations in time that need to be averaged out. We obtain at the limit a system of 2-dimensional Schr\"odinger equations in the plane (x,y)(x,y), coupled through an effective selfconsistent electrical potential. In the direction perpendicular to the magnetic field, the electron mass is modified by the field, as the result of an averaging of the cyclotron motion. The main tools of the analysis are the adaptation of the second order long-time averaging theory of ODEs to our PDEs context, and the use of a Sobolev scale adapted to the confinement operator

    Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    An analysis is presented of events containing jets including at least one b-tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb−1 of pp collisions at √s=8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced rate of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b′-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b′-quarks, but the significance of the discrepancy is less than two standard deviations. The discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models
    corecore