30 research outputs found

    Intensified DES mediated ultrasound extraction of tannic acid from onion peel

    Get PDF
    Ultrasound–assisted extraction using deep eutectic solvent (DES) was performed to extract tannic acid from onion peel. Notably, DES is an excellent extraction agent, which yielded 641.16 ± 0.01 μg/g of tannic acid compared to the extraction using a conventional solvent (368.99 ± 0.02 μg/g). Subsequently, the research was conducted based on several exploited parameters and achieved the highest extraction yield (1705.79 ± 0.01 μg/g) at the DES ratio of 1:1 (mass ratio of choline chloride to urea), solid to solvent ratio of 1:10 and duty cycle of 10%. The onion sample exhibited higher antioxidant capacity than standard ascorbic acid, which was expressed in the lower values of the half-maximal inhibitory concentration (IC50) at 7.70 ± 1.12 and 10.14 ± 0.11 mg/ml, respectively. Moreover, the Fick's model successfully forecasted that diffusivity is the controlling factor in the extraction of tannic acid via the DES mediated ultrasound–assisted extraction method

    Mixed Climatology, Non-synoptic Phenomena and Downburst Wind Loading of Structures

    Get PDF
    Modern wind engineering was born in 1961, when Davenport published a paper in which meteorology, micrometeorology, climatology, bluff-body aerodynamics and structural dynamics were embedded within a homogeneous framework of the wind loading of structures called today \u201cDavenport chain\u201d. Idealizing the wind with a synoptic extra-tropical cyclone, this model was so simple and elegant as to become a sort of axiom. Between 1976 and 1977 Gomes and Vickery separated thunderstorm from non-thunderstorm winds, determined their disjoint extreme distributions and derived a mixed model later extended to other Aeolian phenomena; this study, which represents a milestone in mixed climatology, proved the impossibility of labelling a heterogeneous range of events by the generic term \u201cwind\u201d. This paper provides an overview of this matter, with particular regard to the studies conducted at the University of Genova on thunderstorm downbursts

    Biomarkers for point-of-care diagnosis of sepsis

    No full text
    Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. In 2017, almost 50 million cases of sepsis were recorded worldwide and 11 million sepsis-related deaths were reported. Therefore, sepsis is the focus of intense research to better understand the complexities of sepsis response, particularly the twin underlying concepts of an initial hyper-immune response and a counter-immunological state of immunosuppression triggered by an invading pathogen. Diagnosis of sepsis remains a significant challenge. Prompt diagnosis is essential so that treatment can be instigated as early as possible to ensure the best outcome, as delay in treatment is associated with higher mortality. In order to address this diagnostic problem, use of a panel of biomarkers has been proposed as, due to the complexity of the sepsis response, no single marker is sufficient. This review provides background on the current understanding of sepsis in terms of its epidemiology, the evolution of the definition of sepsis, pathobiology and diagnosis and management. Candidate biomarkers of interest and how current and developing point-of-care testing approaches could be used to measure such biomarkers is discussed

    Traditional method of fish treatment, microbial count and palatability studies on spoiled fish

    No full text
    Aims: To evaluate the microbial count and palatability acceptance of spoiled fish after treatment with traditionally used naturalsolution.Methodology and results: To compare microbial count of spoiled fish before and after treatment with natural solution practicedby local people in Malaysia, 10 g of spoiled fish was respectively rinsed with 100 mL of 0.1% of natural solution such as Averrhoabilimbi extract, rice rinsed water, rice vinegar, Citrus aurantifolia extract, salt, flour, and Tamarindus indica extract. Flesh of fishrinsed with rice vinegar was found to be able to reduce microbial count (CFU/mL = 0.37 X 107) more than 4.5 times whencompared to spoiled fish (CFU/mL=1.67x 107). Spoiled fish that was treated with rice vinegar was prepared into a cutlet and fried.The cutlet was subjected to palatability acceptance study by a group of residents in Palm Court Condominium, Brickfields, KualaLumpur. The palatability study from the Cronbach alpha shown that the taste have the reliability of 0.802, the aroma has thereliability of 0.888, colour with the reliability of 0.772, texture or mouth feel have reliability of 0.840 and physical structure of thecutlet is 0.829.Conclusion, significance and impact of study: Treatment of spoiled fish using rice vinegar as practice by local peopletraditionally shown a significant reduction in microbial count and the vinegar-treated fish could be developed into a product that issafe and acceptable by the consumer

    Aptamer-Based Electrochemical Biosensors for the Detection of Salmonella: A Scoping Review

    No full text
    The development of rapid, accurate, and efficient detection methods for Salmonella can significantly control the outbreak of salmonellosis that threatens global public health. Despite the high sensitivity and specificity of the microbiological, nucleic-acid, and immunological-based methods, they are impractical for detecting samples outside of the laboratory due to the requirement for skilled individuals and sophisticated bench-top equipment. Ideally, an electrochemical biosensor could overcome the limitations of these detection methods since it offers simplicity for the detection process, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The present scoping review aims to assess the current trends in electrochemical aptasensors to detect and quantify Salmonella. This review was conducted according to the latest Preferred Reporting Items for Systematic review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. A literature search was performed using aptamer and Salmonella keywords in three databases: PubMed, Scopus, and Springer. Studies on electrochemical aptasensors for detecting Salmonella published between January 2014 and January 2022 were retrieved. Of the 787 studies recorded in the search, 29 studies were screened for eligibility, and 15 studies that met the inclusion criteria were retrieved for this review. Information on the Salmonella serovars, targets, samples, sensor specification, platform technologies for fabrication, electrochemical detection methods, limit of detection (LoD), and detection time was discussed to evaluate the effectiveness and limitations of the developed electrochemical aptasensor platform for the detection of Salmonella. The reported electrochemical aptasensors were mainly developed to detect Salmonella enterica Typhimurium in chicken meat samples. Most of the developed electrochemical aptasensors were fabricated using conventional electrodes (13 studies) rather than screen-printed electrodes (SPEs) (two studies). The developed aptasensors showed LoD ranges from 550 CFU/mL to as low as 1 CFU/mL within 5 min to 240 min of detection time. The promising detection performance of the electrochemical aptasensor highlights its potential as an excellent alternative to the existing detection methods. Nonetheless, more research is required to determine the sensitivity and specificity of the electrochemical sensing platform for Salmonella detection, particularly in human clinical samples, to enable their future use in clinical practice

    Performance of Immunodiagnostic Tests for Typhoid Fever: A Systematic Review and Meta-Analysis

    No full text
    Typhoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever. A literature search was conducted using three databases (PubMed, ProQuest and Scopus) and manual searches through the references of identified full texts to retrieve relevant literature published between 1 January 2011 and 31 December 2020. Of the 577 studies identified in our search, 12 were included in further analysis. Lipopolysaccharides (LPS) and hemolysin E (HlyE) were the most frequently studied antigens. The specimens examined in these studies included serum and saliva. Using blood culture as the gold standard, anti-LPS IgA gave the highest sensitivity of 96% (95% CI: 93–99) and specificity of 96% (95% CI: 93–99) for distinguishing between typhoid cases and healthy controls, whereas the combination of anti-LPS and anti-flagellin total IgGAM gave the highest sensitivity of 93% (95% CI: 86–99) and specificity of 95% (95% CI: 89–100) for distinguishing typhoid cases and other febrile infections. A comparably high sensitivity of 92% (95% CI: 86–98) and specificity of 89% (95% CI: 78–100) were shown in testing based on detection of the combination of anti-LPS (IgA and IgM) and anti-HlyE IgG as well as a slightly lower sensitivity of 91% (95% CI: 74–100) in the case of anti-50kDa IgA. Anti-50kDa IgM had the lowest sensitivity of 36% (95% CI: 6–65) against both healthy and febrile controls. The development of a rapid diagnostic test targeting antibodies against lipopolysaccharides combined with flagellin appeared to be a suitable approach for the rapid detection test of typhoid fever. Saliva is added benefit for rapid typhoid diagnosis since it is less invasive. As a result, further studies could be done to develop additional approaches for adopting such samples

    Exploring the Therapeutic Potential of Traditional Antimalarial and Antidengue Plants: A Mechanistic Perspective

    No full text
    Malaria, a highly perilous infectious disease, impacted approximately 230 million individuals globally in 2019. Mosquitoes, vectors of over 10% of worldwide diseases, pose a significant public health menace. The pressing need for novel antimalarial drugs arises due to the imminent threat faced by nearly 40% of the global population and the escalating resistance of parasites to current treatments. This study comprehensively addresses prevalent parasitic and viral illnesses transmitted by mosquitoes, leading to the annual symptomatic infections of 400 million individuals, placing 100 million at constant risk of contracting these diseases. Extensive investigations underscore the pivotal role of traditional plants as rich sources for pioneering pharmaceuticals. The latter half of this century witnessed the ascent of bioactive compounds within traditional medicine, laying the foundation for modern therapeutic breakthroughs. Herbal medicine, notably influential in underdeveloped or developing nations, remains an essential healthcare resource. Traditional Indian medical systems such as Ayurveda, Siddha, and Unani, with a history of successful outcomes, highlight the potential of these methodologies. Current scrutiny of Indian medicinal herbs reveals their promise as cutting-edge drug reservoirs. The propensity of plant-derived compounds to interact with biological receptors positions them as prime candidates for drug development. Yet, a comprehensive perspective is crucial. While this study underscores the promise of plant-based compounds as therapeutic agents against malaria and dengue fever, acknowledging the intricate complexities of drug development and the challenges therein are imperative. The journey from traditional remedies to contemporary medical applications is multifaceted and warrants prudent consideration. This research aspires to offer invaluable insights into the management of malaria and dengue fever. By unveiling plant-based compounds with potential antimalarial and antiviral properties, this study aims to contribute to disease control. In pursuit of this goal, a thorough understanding of the mechanistic foundations of traditional antimalarial and antidengue plants opens doors to novel therapeutic avenues
    corecore