4 research outputs found

    Afferent arteriolopathy and glomerular collapse but not segmental sclerosis induce tubular atrophy in old spontaneously hypertensive rats

    Get PDF
    In chronic renal disease, the temporal and spatial relationship between vascular, glomerular and tubular changes is still unclear. Hypertension, an important cause of chronic renal failure, leads to afferent arteriolopathy, segmental glomerulosclerosis and tubular atrophy in the juxtamedullary cortex. We investigated the pathological changes of hypertensive renal disease in aged spontaneously hypertensive rats using a large number of serial sections, where we traced and analyzed afferent arteriole, glomerulus and proximal tubule of single nephrons. Our major finding was that both afferent arteriolopathy and glomerular capillary collapse were linked to tubular atrophy. Only nephrons with glomerular collapse (n = 13) showed tubules with reduced diameter indicating atrophy [21.66 ± 2.56 μm vs. tubules in normotensive Wistar Kyoto rats (WKY) 38.56 ± 0.56 μm, p < 0.05], as well as afferent arteriolar wall hypertrophy (diameter 32.74 ± 4.72 μm vs. afferent arterioles in WKY 19.24 ± 0.98 μm, p < 0.05). Nephrons with segmental sclerosis (n = 10) did not show tubular atrophy and tubular diameters were unchanged (35.60 ± 1.43 μm). Afferent arteriolar diameter negatively correlated with glomerular capillary volume fraction (r = −0.36) and proximal tubular diameter (r = −0.46) implying reduced glomerular and tubular flow. In line with this, chronically damaged tubules showed reduced staining for the ciliary protein inversin indicating changed ciliary signalling due to reduced urinary flow. This is the first morphological study on hypertensive renal disease making correlations between vascular, glomerular and tubular components of individual nephron units. Our data suggest that afferent arteriolopathy leads to glomerular collapse and reduced urinary flow with subsequent tubular atrophy

    Fasting Induces the Expression of PGC-1α and ERR Isoforms in the Outer Stripe of the Outer Medulla (OSOM) of the Mouse Kidney

    Get PDF
    Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is a member of the transcriptional coactivator family that plays a central role in the regulation of cellular energy metabolism under various physiological stimuli. During fasting, PGC-1α is induced in the liver and together with estrogen-related receptor a and γ (ERRα and ERRγ, orphan nuclear receptors with no known endogenous ligand, regulate sets of genes that participate in the energy balance program. We found that PGC-1α, ERRα and ERRγ was highly expressed in human kidney HK2 cells and that PGC-1α induced dynamic protein interactions on the ERRα chromatin. However, the effect of fasting on the expression of endogenous PGC-1α, ERRα and ERRγ in the kidney is not known.In this study, we demonstrated by qPCR that the expression of PGC-1α, ERRα and ERRγ was increased in the mouse kidney after fasting. By using immunohistochemistry (IHC), we showed these three proteins are co-localized in the outer stripe of the outer medulla (OSOM) of the mouse kidney. We were able to collect this region from the kidney using the Laser Capture Microdissection (LCM) technique. The qPCR data showed significant increase of PGC-1α, ERRα and ERRγ mRNA in the LCM samples after fasting for 24 hours. Furthermore, the known ERRα target genes, mitochondrial oxidative phosphorylation gene COX8H and the tricarboxylic acid (TCA) cycle gene IDH3A also showed an increase. Taken together, our data suggest that fasting activates the energy balance program in the OSOM of the kidney

    Vasopressin: a novel target for the prevention and retardation of kidney disease?

    No full text
    corecore