20 research outputs found

    Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as <it>Vitis </it>and <it>Vacciunium</it>, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast <it>Saccharomyces cerevisiae</it>.</p> <p>Methods</p> <p><it>S. cerevisiae </it>strain S288C was exposed to pterostilbene at the IC<sub>50 </sub>concentration (70 μM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and <it>S. cerevisiae </it>mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene.</p> <p>Results</p> <p>Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment.</p> <p>Conclusion</p> <p>Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound.</p

    Dietary supplementation with hydrolyzed yeast and its effect on the performance, intestinal microbiota, and immune response of weaned piglets.

    Get PDF
    The objective of this study was to evaluate the effects of autolyzed yeast on performance, cecal microbiota, and leukogram of weaned piglets. A total of 96 piglets of commercial line weaned at 21-day-old were used. The experimental design was a randomized block design with four treatments (diets containing 0.0%, 0.3%, 0.6%, and 0.9% autolyzed yeast), eight replicates, and three animals per pen in order to evaluate daily weight gain, daily feed intake, and feed conversion in periods of 0 to 15, 0 to 26, and 0 to 36 days. Quadratic effects of autolyzed yeast inclusion were observed on the feed conversion from 0 to 15 days, on daily weight gain from 0 to 15 days, 0 to 26 days and, 0 to 36 days, indicating an autolyzed yeast optimal inclusion level between 0.4% and 0.5%. No effect from autolyzed yeast addition was observed on piglet daily feed intake, cecal microbiota, and leukogram; however, i.m. application of E. coli lipopolysaccharide reduced the values of total leukocytes and their fractions (neutrophils, eosinophils, lymphocytes, monocytes, and rods). Therefore, autolyzed yeast when provided at levels between 0.4% and 0.5% improved weaned piglets’ performance.info:eu-repo/semantics/publishedVersio

    Glucanases and Chitinases

    No full text
    In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.This work was supported by grants from the Spanish Government to CR (BFU2017-84508-P) and CRV (BIO2015-70195-C2-1-R) and from Junta de Castilla y León to CR (SA116G19). The IBFG is supported by Programa “Escalera de Excelencia” from Junta de Castilla y León (CLU-2017-03) and University of Salamanca. All Spanish funding is co-sponsored by the European Union FEDER programme.Peer reviewe
    corecore