6 research outputs found
Absolutely stable proton and lowering the gauge unification scale
A unified model is constructed, based on flipped SU(5) in which the proton is absolutely stable. The model requires the existence of new leptons with masses of order the weak scale. The possibility that the unification scale could be extremely low is discussed
SU(7) Unification of SU(3)_C*SU(4)_W* U(1)_{B-L}
We propose the SUSY SU(7) unification of the SU(3)_C* SU(4)_W* U(1)_{B-L}
model. Such unification scenario has rich symmetry breaking chains in a
five-dimensional orbifold. We study in detail the SUSY SU(7) symmetry breaking
into SU(3)_C* SU(4)_W* U(1)_{B-L} by boundary conditions in a Randall-Sundrum
background and its AdS/CFT interpretation. We find that successful gauge
coupling unification can be achieved in our scenario. Gauge unification favors
low left-right and unification scales with tree-level \sin^2\theta_W=0.15. We
use the AdS/CFT dual of the conformal supersymmetry breaking scenario to break
the remaining N=1 supersymmetry. We employ AdS/CFT to reproduce the NSVZ
formula and obtain the structure of the Seiberg duality in the strong coupling
region for 3/2N_c<N_F<3N_C. We show that supersymmetry is indeed broken in the
conformal supersymmetry breaking scenario with a vanishing singlet vacuum
expectation value.Comment: 25 pages, 1 figure
Sparticle mass spectra from SU(5) SUSY GUT models with Yukawa coupling unification
Supersymmetric grand unified models based on the gauge group SU(5) often
require in addition to gauge coupling unification, the unification of b-quark
and -lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space
under the condition of Yukawa coupling unification using 2-loop MSSM
RGEs including full 1-loop threshold effects. The Yukawa-unified solutions
break down into two classes. Solutions with low tan\beta ~3-11 are
characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these
solutions would be beyond LHC reach, although they contain a light Higgs scalar
with mass <123 GeV and so may be excluded should the LHC Higgs hint persist.
The second class of solutions occurs at large tan\beta ~35-60, and are a subset
of unified solutions. Constraining only unification to ~5%
favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be
accessible to LHC searches. While our unified solutions can be
consistent with a picture of neutralino-only cold dark matter, invoking
additional moduli or Peccei-Quinn superfields can allow for all of our
Yukawa-unified solutions to be consistent with the measured dark matter
abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate