50 research outputs found

    Effects of Temperature, Salinity and Fish in Structuring the Macroinvertebrate Community in Shallow Lakes: Implications for Effects of Climate Change

    Get PDF
    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes

    Long-term changes and impacts of hypoxia in Danish coastal waters

    No full text
    A 38-year record of bottom water dissolved oxygen concentrations in coastal marine ecosystems around Denmark (1965-2003) and a longer partially reconstructed record of total nitrogen (TN) inputs (1900-2003) were assembled to describe long-term patterns in hypoxia and anoxia. Interannual variations in bottom water oxygen concentrations were analyzed in relation to various explanatory variables (bottom temperature, wind speed, advective transport, TN loading). Reconstructed TN loads peaked in the 1980s with a gradual decline to the present, commensurate with a legislated nutrient reduction strategy. Mean bottom water oxygen concentrations during summer have significantly declined in coastal marine ecosystems, decreasing substantially during the 1980s and were extremely variable thereafter. Despite decreasing TN loads, the worst hypoxic event ever recorded in open waters occurred in 2002. For estuaries and coastal areas, bottom water oxygen concentrations were best described by TN input from land and wind speed in July-September, explaining 52% of the interannual variation in concentrations. For open sea areas, bottom water oxygen concentrations were also modulated by TN input from land, however, additional significant variables included advective transport of water and Skagerrak surface water temperature and explained 49% of interannual variations in concentrations. Reductions in benthic species number and alpha diversity were significantly related to the duration of the 2002 hypoxic event. Gradual decreases in diversity measures (species number and alpha diversity) over the first 2-4 weeks show that the benthic community undergoes significant changes before the duration of hypoxia is severe enough to cause the community to collapse. Enhanced sediment-water fluxes of NH4+ and PO43- occur with hypoxia, increasing nutrient concentrations in the water column, and stimulating additional phytoplankton production. Repeated hypoxic events have changed the character of benthic communities and how organic matter is processed in sediments. Our data suggest that repeated hypoxic events lead to an increase in susceptibility of Danish waters to eutrophication and further hypoxia

    Factors influencing organic carbon recycling and burial in Skagerrak sediments

    No full text
    Different factors influencing recycling and burial rates of organic carbon (OC) were investigated in the continental margin sediments of the Skagerrak (NE North Sea). Two different areas, one in the southern and one in the northeastern part of the Skagerrak were visited shortly after a spring bloom (March 1999) and in late summer (August 2000). Results suggested that: (1) Organic carbon oxidation rates (C-ox) (2.2-18 mmol Cm-2 d(-1)) were generally larger than the O-2 uptake rates (1.9-25 mmol m(-2) d(-1)). Both rates were measured in situ using a benthic lander. A mean apparent respiration ratio (C-ox:O-2corr) of 1.3 +/- 0.5 was found, indicating some long-term burial of reduced inorganic substances in these sediments. Measured O-2, fluxes increased linearly with increasing C-ox rates during the late summer cruise but not on the, early spring cruise, indicating a temporal uncoupling of anaerobic mineralization and reoxidation of reduced substances. (2) Dissolved organic carbon (DOC) fluxes (0.2-1.0 mmol Cm-2 d(-1)) constituted 3-10% of the C-ox rates and were positively correlated with the latter, implying that net DOC production rates were proportional to the overall sediment OC remineralization rates. (3) Chlorophyll a (Chl-a) concentrations in the sediment were significantly higher in early spring compared to late summer. The measured C-ox rates, but not O-2 fluxes, showed a strong positive correlation with the Chl-a inventories in the top 3 cm of the sediment. (4) Although no relationship was found between the benthic fluxes and the macrofaunal biomass in the chambers, total in situ measured dissolved inorganic carbon (C-T) fluxes were 1-5.4 times higher than diffusive mediated C-T fluxes, indicating that macrofauna have a significant impact on benthic exchange rates of OC remineralization products in Skagerrak sediments. (5) OC burial fluxes were generally higher in northeastern Skagerrak than in the southern part. The same pattern was observed for burial efficiencies, with annual means of similar to62% and similar to43% for the two areas respectively. (6) On a basin-wide scale, there was a significant positive linear correlation between the burial efficiencies and sediment accumulation rates. (7) The calculated particulate organic carbon (POC) deposition, from benthic flux and burial measurements, was only 24-78% of the sediment trap measured POC deposition, indicating a strong near-bottom lateral transport and resuspension of POC. (8) A larger fraction of the laterally advected material of lower quality seemed to settle in the northeastern Skagerrak rather than in the southern Skagerrak. (9) Skagerrak sediments, especially in the northeastern part, act as an efficient net sink for organic carbon, even in a global continental margin context

    Effects of manipulation of food supply on estuarine meiobenthos

    No full text
    A comparative mesocosm experiment was carried out to determine the effects of natural foods of different quality and quantity on the structure of natural meiobenthic communities collected in undisturbed sediment from the polluted Westerschelde and the comparatively undisturbed Gironde estuaries. Nematode communities are more diverse and species rich in the latter estuary. The organic matter or foods used were phytoplankton, green alga, salt marsh plant detritus and leaf litter detritus which were added at three dose rates including a high dose. There was no change in community structure in response to the treatments in either of the estuarine meiobenthic communities. Analysis of all the results from this experiment indicate that the food quantity manipulations had almost no effect on the deposit feeding meiofauna. It may be that the reserves of organic matter within the sediment were sufficient to satisfy their dietary requirements for the duration of the experiment. The abundance of diatom/epigrowth feeding nematodes which were initially dominant in the Gironde, declined substantially suggesting that they may have been food limited since diatoms were not among the sources of organic matter added to the mesocosm. There was no specific response to the five different types of organic matter added to the mesocosm
    corecore