25 research outputs found

    A negative screen for mutations in calstabin 1 and 2 genes in patients with dilated cardiomyopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy.</p> <p>Results</p> <p>We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (<it>FKBP12 </it>and <it>FKBP12.6)</it>. No missense variant was found. Five no-coding variations were found but not related to the disease.</p> <p>Conclusions</p> <p>These data corroborate other studies suggesting that mutations in <it>FKBP12 </it>and <it>FKBP12.6 </it>genes are not commonly related to cardiac diseases.</p

    Livelihood and vulnerability in the wake of Typhoon Yolanda: lessons of community and resilience

    Get PDF
    Livelihood strategies that are crafted in ‘extra-ordinary’ post-disaster conditions should also be able to function once some semblance of normalcy has resumed. This article aims to show that the vulnerability experienced in relation to Typhoon Yolanda was, and continues to be, directly linked to inadequate livelihood assets and opportunities. We examine the extent to which various livelihood strategies lessened vulnerability post-Typhoon Yolanda and argue that creating conditions under which disaster survivors have the freedom to pursue sustainable livelihood is essential in order to foster resilience and reduce vulnerability against future disasters. We offer suggestions to improve future relief efforts, including suggestions made by the survivors themselves. We caution against rehabilitation strategies that knowingly or unknowingly, resurrect pre-disaster vulnerability. Strategies that foster dependency, fail to appreciate local political or ecological conditions or undermine cooperation and cohesion in already vulnerable communities will be bound to fail. Some of the livelihood strategies that we observed post-Typhoon Yolanda failed on some or all of these points. It is important for future policy that these failings are addressed

    Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12

    Full text link
    FKBP12, a cis-trans prolyl isomerase that binds the immunosuppressants FK506 and rapamycin, is ubiquitously expressed and interacts with proteins in several intracellular signal transduction systems(1). Although FKBP12 interacts with the cytoplasmic domains of type I receptors of the transforming growth factor-beta (TGF-beta) superfamily in vitro, the function of FKBP12 in TGF-beta superfamily signalling is controversial(2-6). FKBP12 also physically interacts stoichiometrically with multiple intracellular calcium release channels including the tetrameric skeletal muscle ryanodine dine receptor (RyR1)(7,8). In contrast, the cardiac ryanodine receptor, RyR2, appears to bind selectively the FKBP12 homologue, FKBP12.6 (refs 9, 10). To define the functions of FKBP12 in vivo, we generated mutant mice deficient in FKBP12 using embryonic stem (ES) cell technology. FKBP12-deficient mice have normal skeletal muscle but have severe dilated cardiomyopathy and ventricular septal defects that mimic a human congenital heart disorder, noncompaction of left ventricular myocardium(11,12). About 9% of the mutants exhibit exencephaly secondary to a defect in neural tube closure. Physiological studies demonstrate that FKBP12 is dispensable for TGF-beta-mediated signalling, but modulates the calcium release activity of both skeletal and cardiac ryanodine receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62697/1/391489a0.pd

    Stac3 is a component of the excitation–contraction coupling machinery and mutated in Native American myopathy

    No full text
    Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in EC coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the EC coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca(2+) imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 as the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies
    corecore