748 research outputs found

    Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity

    Get PDF
    We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.Comment: 52 pages, 6 figures. v3: Appendix F added showing numerical interpolation between the near-horizon region and AdS4. Additional minor comments also adde

    Universal time-dependent deformations of Schrodinger geometry

    Get PDF
    We investigate universal time-dependent exact deformations of Schrodinger geometry. We present 1) scale invariant but non-conformal deformation, 2) non-conformal but scale invariant deformation, and 3) both scale and conformal invariant deformation. All these solutions are universal in the sense that we could embed them in any supergravity constructions of the Schrodinger invariant geometry. We give a field theory interpretation of our time-dependent solutions. In particular, we argue that any time-dependent chemical potential can be treated exactly in our gravity dual approach.Comment: 24 pages, v2: references adde

    DWSB in heterotic flux compactifications

    Get PDF
    We address the construction of non-supersymmetric vacua in heterotic compactifications with intrinsic torsion and background fluxes. In particular, we implement the approach of domain-wall supersymmetry breaking (DWSB) previously developed in the context of type II flux compactifications. This approach is based on considering backgrounds where probe NS5-branes wrapping internal three-cycles and showing up as four-dimensional domain-walls do not develop a BPS bound, while all the other BPS bounds characterizing the N=1 supersymmetric compactifications are preserved at tree-level. Via a scalar potential analysis we provide the conditions for these backgrounds to solve the ten-dimensional equations of motion including order \alpha' corrections. We also consider backgrounds where some of the NS5-domain-walls develop a BPS bound, show their relation to no-scale SUSY-breaking vacua and construct explicit examples via elliptic fibrations. Finally, we consider backgrounds with a non-trivial gaugino condensate and discuss their relation to supersymmetric and non-supersymmetric vacua in the present context.Comment: 56 pages, 1 figur

    Moduli backreaction and supersymmetry breaking in string-inspired inflation models

    Full text link
    We emphasize the importance of effects from heavy fields on supergravity models of inflation. We study, in particular, the backreaction of stabilizer fields and geometric moduli in the presence of supersymmetry breaking. Many effects do not decouple even if those fields are much heavier than the inflaton field. We apply our results to successful models of Starobinsky-like inflation and natural inflation. In most scenarios producing a plateau potential it proves difficult to retain the flatness of the potential after backreactions are taken into account. Some of them are incompatible with non-perturbative moduli stabilization. In natural inflation there exist a number of models which are not constrained by backreactions at all. In those cases the correction terms from heavy fields have the same inflaton-dependence as the uncorrected potential, so that inflation may be possible even for very large gravitino masses.Comment: 29 pages, 1 figure, comments added, subsection 2.3 added, published versio

    Natural images from the birthplace of the human eye

    Get PDF
    Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we acquired about 5000 six-megapixel images of Okavango Delta of Botswana, a tropical savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture, object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths. This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research in computer vision, psychophysics of perception, and visual neuroscience.Comment: Submitted to PLoS ON

    Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index

    Full text link
    We provide the geometrical meaning of the N=4{\cal N}=4 superconformal index. With this interpretation, the N=4{\cal N}=4 superconformal index can be realized as the partition function on a Scherk-Schwarz deformed background. We apply the localization method in TQFT to compute the deformed partition function since the deformed action can be written as a δϵ\delta_\epsilon-exact form. The critical points of the deformed action turn out to be the space of flat connections which are, in fact, zero modes of the gauge field. The one-loop evaluation over the space of flat connections reduces to the matrix integral by which the N=4{\cal N}=4 superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major revision, conclusions essentially unchanged, v5 published versio

    G-quadruplex structures mark human regulatory chromatin

    Get PDF
    G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5' UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC\textit{MYC}. Strikingly, de novo\textit{de novo} and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor-induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.European Molecular Biology Organization (EMBO Long-Term Fellowship), University of Cambridge, Cancer Research UK (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z

    Testing the gaugino AMSB model at the Tevatron via slepton pair production

    Full text link
    Gaugino AMSB models-- wherein scalar and trilinear soft SUSY breaking terms are suppressed at the GUT scale while gaugino masses adopt the AMSB form-- yield a characteristic SUSY particle mass spectrum with light sleptons along with a nearly degenerate wino-like lightest neutralino and quasi-stable chargino. The left- sleptons and sneutrinos can be pair produced at sufficiently high rates to yield observable signals at the Fermilab Tevatron. We calculate the rate for isolated single and dilepton plus missing energy signals, along with the presence of one or two highly ionizing chargino tracks. We find that Tevatron experiments should be able to probe gravitino masses into the ~55 TeV range for inoAMSB models, which corresponds to a reach in gluino mass of over 1100 GeV.Comment: 14 pages including 6 .eps figure

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore