69 research outputs found
Future therapeutic targets in rheumatoid arthritis?
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches
Antiferromagnetic spintronics
Antiferromagnetic materials are magnetic inside, however, the direction of
their ordered microscopic moments alternates between individual atomic sites.
The resulting zero net magnetic moment makes magnetism in antiferromagnets
invisible on the outside. It also implies that if information was stored in
antiferromagnetic moments it would be insensitive to disturbing external
magnetic fields, and the antiferromagnetic element would not affect
magnetically its neighbors no matter how densely the elements were arranged in
a device. The intrinsic high frequencies of antiferromagnetic dynamics
represent another property that makes antiferromagnets distinct from
ferromagnets. The outstanding question is how to efficiently manipulate and
detect the magnetic state of an antiferromagnet. In this article we give an
overview of recent works addressing this question. We also review studies
looking at merits of antiferromagnetic spintronics from a more general
perspective of spin-ransport, magnetization dynamics, and materials research,
and give a brief outlook of future research and applications of
antiferromagnetic spintronics.Comment: 13 pages, 7 figure
Assessing the impact of low level laser therapy (LLLT) on biological systems: a review
PURPOSE: Low level laser therapy (LLLT) in the visible to near infrared spectral band (390-1100 nm) is absorption of laser light at the electronic level, without generation of heat. It may be applied in a wide range of treatments including wound healing, inflammation and pain reduction. Despite its potential beneficial impacts, the use of lasers for therapeutic purposes still remains controversial in mainstream medicine. Whilst taking into account the physical characteristics of different qualities of lasers, this review aims to provide a comprehensive account of the current literature available in the field pertaining to their potential impact at cellular and molecular levels elucidating mechanistic interactions in different mammalian models. The review also aims to focus on the integral approach of the optimal characteristics of LLLT that suit a biological system target to produce the beneficial effect at the cellular and molecular levels. METHODS: Recent research articles were reviewed that explored the interaction of lasers (coherent sources) and LEDs (incoherent sources) at the molecular and cellular levels. RESULTS: It is envisaged that underlying mechanisms of beneficial impact of lasers to patients involves biological processes at the cellular and molecular levels. The biological impact or effects of LLLT at the cellular and molecular level could include cellular viability, proliferation rate, as well as DNA integrity and the repair of damaged DNA. This review summarizes the available information in the literature pertaining to cellular and molecular effects of lasers. CONCLUSIONS: It is suggested that a change in approach is required to understand how to exploit the potential therapeutic modality of lasers whilst minimizing its possible detrimental effects
Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation
Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants
The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes
Barriers to breast self examination practice among Malaysian female students: a cross sectional study
Suppression of Rheumatoid Arthritis by Enhanced Lymph Node Trafficking of Engineered Interleukin‐10 in Murine Models
Microbiota‐Dependent Involvement of Th17 Cells in Murine Models of Inflammatory Arthritis
Otonom Araçlar İçin Akıllı Direksiyon Tahrik Sistemi Geliştirilmesi
Elektrikli direksiyon sistemleri hidrolik sistemler ile kıyaslandığında, özellikle şehir trafiğinde yakıt tüketimi azaltımı ve CO2 emisyonunda azalma sağlamaktadır. Özellikle elektrik motor destekli sistemlerin direksiyonda kullanılmasıyla birçok mekanik parçanın kullanımı ortadan kalkarak ağırlık azaltımı sağlanabilmektedir. Bu sistemin en önemli faydaları; hassas kontrol kabiliyeti, yüksek verim, birçok sürüş seçeneğine imkân sağlama, araç ağırlığının azaltımı, kolay kurulum, programlama, bakım kolaylığı ve araç içi haberleşme kabiliyetinin artmasıdır. Tam otonom araçlara doğru gidilirken haberleşme kabiliyeti, esnekliği ve otonom sürüş senaryolarına uygun bir elektrikli direksiyon sistemin pazarda önemli bir bileşen olması kaçınılmazdır. Bu gerekçelerle proje kapsamında küçük boyutlu, yüksek momentli, yüksek hassasiyetli pozisyon kontrol kabiliyetli, gelişmiş haberleşme kabiliyetlerine sahip ve kendine özgü ara yüzü ile araca ve kullanıcıya özgü limit, fonksiyon ve güvenlik tanımlamasına sahip bir tahrik sistemi geliştirilmiştir. Proje çıktısının ana hedefi olan SAE Seviye-4 otonom araç gereksinimlerini karşılayan bir direksiyon tahrik sistemi için 3000 dev/dk, 24-48 V arası nominal gerilimde çalışabilen, 200 W gücünde, 0.5 Nm nominal momente sahip bir bütünleşik sürücülü bir tahrik sistemi geliştirilmiş ve imal edilmiştir. Bu doğrultuda motor tasarımı ve imalatı, sürücü tasarımı ve imalatı, araç elektronik kontrol ünitesiyle haberleşme katmanı geliştirilmesi, otonom sürüş fonksiyonlarının tanımlanması aşamaları tamamlanmıştır. Bunlara ek olarak gelişmiş bir simülatör sistemi proje kapsamında başarıyla tamamlanmıştır. Proje süresince üç araştırmacı, bir lisans bursiyeri ve üç yüksek lisans bursiyeri görev almıştır. Çalışmalar sonunda direksiyon tahrik sistemi ve simülatör için faydalı model ve patent başvurusu yapılmıştır. İki Yüksek Lisans Tezi ve bir Lisans Bitirme Projesi?ne ek olarak iki adet yayın başvurusu yapılmıştır
- …
