25 research outputs found

    Impact of effective prevention and management of febrile neutropenia

    Get PDF
    Chemotherapy-induced febrile neutropenia is costly in both financial and human terms. The associated costs can be reduced substantially through the development and implementation of national policies and locally agreed protocols for the prevention and management of febrile neutropenia. Patients, the NHS, healthcare professionals and the broader community all stand to benefit from a commitment to effective management of this common and predictable side effect of some chemotherapy regimens for early-stage breast cancer

    Simple synthetic toll-like receptor 2 ligands

    No full text
    Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers

    Structure-activity relationship of lipopeptide Group A streptococcus (GAS) vaccine candidates on toll-like receptor 2

    No full text
    To develop an oral nanovaccine delivery system for lipopeptide-based vaccine candidate against group A Streptococcus

    Design of fully synthetic, self-adjuvanting vaccine incorporating the tumor-associated carbohydrate Tn antigen and lipoamino acid-based toll-like receptor 2 ligand

    No full text
    Overexpression of certain tumor-associated carbohydrate antigens (TACA) caused by malignant transformation offers promising targets to develop novel antitumor vaccines, provided the ability to break their inherent low immunogenicity and overcome the tolerance of the immune system. We designed, synthesized, and immunologically evaluated a number of fully synthetic new chimeric constructs incorporating a cluster of the most common TACA (known as Tn antigen) covalently attached to T-cell peptide epitopes derived from polio virus and ovalbumin and included a synthetic built-in adjuvant consisting of two 16-carbon lipoamino acids. Vaccine candidates were able to induce significantly strong antibody responses in mice without the need for any additional adjuvant, carrier protein, or special pharmaceutical preparation (e.g., liposomes). Vaccine constructs were assembled either in a linear or in a branched architecture, which demonstrated the intervening effects of the incorporation and arrangement of T-cell epitopes on antibody recognition

    Design of three-component vaccines against group A streptococcal infections: Importance of spatial arrangement of vaccine components

    No full text
    Immunological assessment of group A streptococcal (GAS) branched lipopeptides demonstrated the impact of spatial arrangement of vaccine components on both the quality and quantity of their immune responses. Each lipopeptide was composed of three components: a GAS B-cell epitope (J14), a universal CD4+ T-cell helper epitope (P25), and an immunostimulant lipid moiety that differs only in its spatial arrangement. The best systemic immune responses were demonstrated by a lipopeptide featuring the lipid moiety at the lipopeptide C-terminus. However, this candidate did not achieve protection against bacterial challenge. The best protection (100%) was shown by a lipopeptide featuring a C-terminal J14, conjugated through a lysine residue to P25 at the N-terminus, and a lipid moiety on the lysine side chain. The former candidate features α-helical conformation required to produce protective J14-specific antibodies. Our results highlight the importance of epitope orientation and lipid position in the design of three-component synthetic vaccines.© 2010 American Chemical Society

    Structure-activity relationship for the development of a self-adjuvanting mucosally active lipopeptide vaccine against Streptococcus pyogenes

    No full text
    Infection with group A streptococcus (GAS) can result in a number of diseases, some of which are potentially life-threatening. The oral-nasal mucosa is a primary site of GAS infection, and a mucosally active vaccine candidate could form the basis of an antidisease and transmission-blocking GAS vaccine. In the present study, a peptide from the GAS M protein (J14) representing a B cell epitope was incorporated alongside a universal T cell helper epitope and a Toll-like receptor 2 targeting lipid moiety to form lipopeptide constructs. Through structure activity studies, we identified a vaccine candidate that induces J14-specific mucosal and systemic antibody responses when administered intranasally without additional adjuvants. The systemic antibodies elicited were capable of inhibiting the growth of GAS. In addition, J14-specific mucosal antibodies corresponded with reduced throat colonization after respiratory GAS challenge. These preclinical experiments show that this lipopeptide could form the basis of an optimal needle-free mucosal GAS vaccine

    Design of Fully Synthetic, Self-Adjuvanting Vaccine Incorporating the Tumor-Associated Carbohydrate Tn Antigen and Lipoamino Acid-Based Toll-like Receptor 2 Ligand

    No full text
    Overexpression of certain tumor-associated carbohydrate antigens (TACA) caused by malignant transformation offers promising targets to develop novel antitumor vaccines, provided the ability to break their inherent low immunogenicity and overcome the tolerance of the immune system. We designed, synthesized, and immunologically evaluated a number of fully synthetic new chimeric constructs incorporating a cluster of the most common TACA (known as Tn antigen) covalently attached to T-cell peptide epitopes derived from polio virus and ovalbumin and included a synthetic built-in adjuvant consisting of two 16-carbon lipoamino acids. Vaccine candidates were able to induce significantly strong antibody responses in mice without the need for any additional adjuvant, carrier protein, or special pharmaceutical preparation (e.g., liposomes). Vaccine constructs were assembled either in a linear or in a branched architecture, which demonstrated the intervening effects of the incorporation and arrangement of T-cell epitopes on antibody recognition
    corecore