18 research outputs found

    Withanolides and related steroids

    Get PDF
    Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a δ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing γ-lactones in the side chain that have come to be at least as common as the δ-lactones. The reduced versions (γ and δ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types. Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae. Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Oberti, Juan Carlos María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); Argentin

    <it>In vitro</it> antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide particularly in developing countries, a large proportion of the population is at risk for tropical parasitic diseases. Several medicinal plants are still used traditionally against protozoal infections in Yemen and Saudi Arabia. Thus the present study investigated the <it>in vitro</it> antiprotozoal activity of twenty-five plants collected from the Arabian Peninsula.</p> <p>Methods</p> <p>Plant materials were extracted with methanol and screened <it>in vitro</it> against erythrocytic schizonts of <it>Plasmodium falciparum</it>, intracellular amastigotes of <it>Leishmania infantum</it> and <it>Trypanosoma cruzi</it> and free trypomastigotes of <it>T. brucei</it>. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC<sub>50</sub> < 10 μg/ml (<5 μg/ml for <it>T. brucei</it>) and selectivity index of >4.</p> <p>Results</p> <p>Antiplasmodial activity was found in the extracts of <it>Chrozophora oblongifolia</it>, <it>Ficus ingens</it>, <it>Lavandula dentata</it> and <it>Plectranthus barbatus</it>. Amastigotes of <it>T. cruzi</it> were affected by <it>Grewia erythraea</it>, <it>L. dentata</it>, <it>Tagetes minuta</it> and <it>Vernonia leopoldii</it>. Activity against <it>T. brucei</it> was obtained in <it>G. erythraea</it>, <it>L. dentata</it>, <it>P. barbatus</it> and <it>T. minuta</it>. No relevant activity was found against <it>L. infantum</it>. High levels of cytotoxicity (MRC-5 IC<sub>50</sub> < 10 μg/ml) and hence non-specific activities were noted in <it>Cupressus sempervirens</it>, <it>Kanahia laniflora</it> and <it>Kniphofia sumarae</it>.</p> <p>Conclusion</p> <p>The results endorse that medicinal plants can be promising sources of natural products with antiprotozoal activity potential. The results support to some extent the traditional uses of some plants for the treatment of parasitic protozoal diseases.</p
    corecore