28 research outputs found

    Genetic variation in DNA-repair pathways and response to radiochemotherapy in esophageal adenocarcinoma: A retrospective cohort study of the Eastern Cooperative Oncology Group

    Get PDF
    Background: Recent data in esophageal cancer suggests the variant allele of a single-nucleotide polymorphism (SNP) in XRCC1 may be associated with resistance to radiochemotherapy. However, this SNP has not been assessed in a histologically homogeneous clinical trial cohort that has been treated with a uniform approach. In addition, whether germline DNA may serve as a surrogate for tumor genotype at this locus is unknown in this disease. Our objective was to assess this SNP in relation to the pathologic complete response (pCR) rate in subjects with esophageal adenocarcinoma who received cisplatin-based preoperative radiochemotherapy in a multicenter clinical trial (Eastern Cooperative Oncology Group 1201). As a secondary aim, we investigated the rate of allelic imbalance between germline and tumor DNA.Methods: Eighty-one eligible treatment-naïve subjects with newly diagnosed resectable esophageal adenocarcinoma received radiotherapy (45 Gy) concurrent with cisplatin-based chemotherapy, with planned subsequent surgical resection. The primary endpoint was pCR, defined as complete absence of tumor in the surgical specimen after radiochemotherapy. Using germline DNA from 60 subjects, we examined the base-excision repair SNP, XRCC1 Arg399Gln, and 4 other SNPs in nucleotide excision (XPD Lys751Gln and Asp312Asn, ERCC1 3' flank) and double-stranded break (XRCC2 5' flank) repair pathways, and correlated genotype with pCR rate. Paired tumor tissue was used to estimate the frequency of allelic imbalance at the XRCC1 SNP.Results: The variant allele of the XRCC1 SNP (399Gln) was detected in 52% of subjects. Only 6% of subjects with the variant allele experienced a pCR, compared to 28% of subjects without the variant allele (odds ratio 5.37 for failing to achieve pCR, p = 0.062). Allelic imbalance at this locus was found in only 10% of informative subjects, suggesting that germline genotype may reflect tumor genotype at this locus. No significant association with pCR was noted for other SNPs.Conclusions: Assessed for the first time in a prospective, interventional trial cohort of esophageal adenocarcinoma, XRCC1 399Gln was associated with resistance to radiochemotherapy. Further investigation of this genetic variation is warranted in larger cohorts. In addition, these data indicate that germline genotype may serve as a surrogate for tumor genotype at this locus. © 2011 Yoon et al; licensee BioMed Central Ltd

    Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria

    Get PDF
    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5′-AGAAA-3′. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between “differentiated” cell types

    A Brain Region-Specific Predictive Gene Map for Autism Derived by Profiling a Reference Gene Set

    Get PDF
    Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD) remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84), we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO) enrichment analysis which encompassed three main areas: 1) neurogenesis/projection, 2) cell adhesion, and 3) ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe), executive function (prefrontal cortex), and hormone secretion (pituitary). Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research

    Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests significant impact on bacterial virulence and fitness

    Get PDF
    [Abstract] Bacterial genomics has revealed substantial amounts of prophage DNA in bacterial genomes. This integrated viral DNA has been shown to play important roles in the evolution of bacterial pathogenicity. Acinetobacter baumannii has shown a fast progression as a nosocomial multi-resistant pathogen in recent years, and is now considered one of the most dangerous microorganisms in hospital environments. The role of prophages in the evolution of A. baumannii pathogenicity has not yet been explored. In this context, we aimed at evaluating the impact of prophages on A. baumannii genomic diversity and pathogenicity. [...]info:eu-repo/semantics/publishedVersio

    Molecular correlates of host specialization in Staphylococcus aureus

    Get PDF
    The majority of Staphylococcus aureus isolates that are recovered from either serious infections in humans or from mastitis in cattle represent genetically distinct sets of clonal groups. Moreover, population genetic analyses have provided strong evidence of host specialization among S. aureus clonal groups associated with human and ruminant infection. However, the molecular basis of host specialization in S. aureus is not understood.We sequenced the genome of strain ET3-1, a representative isolate of a common bovine mastitis-causing S. aureus clone. Strain ET3-1 encodes several genomic elements that have not been previously identified in S. aureus, including homologs of virulence factors from other gram-positive pathogens. Relative to the other sequenced S. aureus associated with human infection, allelic variation in ET3-1 was high among virulence and surface-associated genes involved in host colonization, toxin production, iron metabolism, antibiotic resistance, and gene regulation. Interestingly, a number of well-characterized S. aureus virulence factors, including protein A and clumping factor A, exist as pseudogenes in ET3-1. Whole-genome DNA microarray hybridization revealed considerable similarity in the gene content of highly successful S. aureus clones associated with bovine mastitis, but not among those clones that are only infrequently recovered from bovine hosts.Whole genome sequencing and comparative genomic analyses revealed a set of molecular genetic features that distinguish clones of highly successful bovine-associated S. aureus optimized for mastitis pathogenesis in cattle from those that infect human hosts or are only infrequently recovered from bovine sources. Further, the results suggest that modern bovine specialist clones diverged from a common ancestor resembling human-associated S. aureus clones through a combination of foreign DNA acquisition and gene decay

    Targeted inhibition of the COP9 signalosome for treatment of cancer

    No full text
    The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin–proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelling of CRLs is initiated by CSN-catalysed cleavage of the ubiquitin-like activator NEDD8 from CRLs. Here we describe CSN5i-3, a potent, selective and orally available inhibitor of CSN5, the proteolytic subunit of CSN. The compound traps CRLs in the neddylated state, which leads to inactivation of a subset of CRLs by inducing degradation of their substrate recognition module. CSN5i-3 differentially affects the viability of tumour cell lines and suppresses growth of a human xenograft in mice. Our results provide insights into how CSN regulates CRLs and suggest that CSN5 inhibition has potential for anti-tumour therapy
    corecore