12 research outputs found

    Control of harmonic generation by the time delay between two-color, bicircular few-cycle mid-IR laser pulses

    Get PDF
    We study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω and 2ω counterrotating mid-IR pulses. Our numerical and analytical study shows that the time delay between the two-color pulses allows control of the harmonic positions, both those allowed by angular momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any particular harmonic is tunable from left to right circular without changing the driving pulse helicity. The highest HHG yield occurs for a time delay comparable to the fundamental period T=2π/ω

    Flat bands as a route to high-temperature superconductivity in graphite

    Full text link
    Superconductivity is traditionally viewed as a low-temperature phenomenon. Within the BCS theory this is understood to result from the fact that the pairing of electrons takes place only close to the usually two-dimensional Fermi surface residing at a finite chemical potential. Because of this, the critical temperature is exponentially suppressed compared to the microscopic energy scales. On the other hand, pairing electrons around a dispersionless (flat) energy band leads to very strong superconductivity, with a mean-field critical temperature linearly proportional to the microscopic coupling constant. The prize to be paid is that flat bands can generally be generated only on surfaces and interfaces, where high-temperature superconductivity would show up. The flat-band character and the low dimensionality also mean that despite the high critical temperature such a superconducting state would be subject to strong fluctuations. Here we discuss the topological and non-topological flat bands discussed in different systems, and show that graphite is a good candidate for showing high-temperature flat-band interface superconductivity.Comment: Submitted as a chapter to the book on "Basic Physics of functionalized Graphite", 21 pages, 12 figure

    Pt and CoB trilayer Josephson π junctions with perpendicular magnetic anisotropy

    Get PDF
    We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co68B32/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we report that there is no magnetic dead layer at the Pt/Co68B32 interfaces, allowing us to study barriers with ultra-thin Co68B32. In the junctions, we observe that the magnitude of the critical current oscillates with increasing thickness of the Co68B32 strong ferromagnetic alloy layer. The oscillations are attributed to the ground state phase difference across the junctions being modified from zero to π. The multiple oscillations in the thickness range 0.2 ⩽ dCoB ⩽ 1.4 nm suggests that we have access to the first zero-π and π-zero phase transitions. Our results fuel the development of low-temperature memory devices based on ferromagnetic Josephson junctions

    Vortex in holographic two-band superfluid/superconductor

    Get PDF
    We construct numerically static vortex solutions in a holographic model of two-band superconductor with an interband Josephson coupling in both the superfluid and superconductor regime. We investigate the effects of the interband coupling on the order parameter of each superconducting band in the vortex solution, and we find that it is different for each of the two bands. We compute also the free energy, critical magnetic field, magnetic penetration length and coherence lengths for the two bands, and we study their dependence on the interband coupling and temperature. Interestingly, we find that the coherence lengths of the two bands are close to identical
    corecore