145 research outputs found

    The Omega Deformation, Branes, Integrability, and Liouville Theory

    Get PDF
    We reformulate the Omega-deformation of four-dimensional gauge theory in a way that is valid away from fixed points of the associated group action. We use this reformulation together with the theory of coisotropic A-branes to explain recent results linking the Omega-deformation to integrable Hamiltonian systems in one direction and Liouville theory of two-dimensional conformal field theory in another direction.Comment: 96 p

    The Omega Deformation From String and M-Theory

    Get PDF
    We present a string theory construction of Omega-deformed four-dimensional gauge theories with generic values of \epsilon_1 and \epsilon_2. Our solution gives an explicit description of the geometry in the core of Nekrasov and Witten's realization of the instanton partition function, far from the asymptotic region of their background. This construction lifts naturally to M-theory and corresponds to an M5-brane wrapped on a Riemann surface with a selfdual flux. Via a 9-11 flip, we finally reinterpret the Omega deformation in terms of non-commutative geometry. Our solution generates all modified couplings of the \Omega-deformed gauge theory, and also yields a geometric origin for the quantum spectral curve of the associated quantum integrable system.Comment: LaTeX, 35 pages, 1 figure. Appendix on couplings of hypermultiplets in N=4 SYM adde

    String theory of the Omega deformation

    Full text link
    In this article, we construct a supersymmetric real mass deformation for the adjoint chiral multiplets in the gauge theory describing the dynamics of a stack of D2-branes in type II string theory. We do so by placing the D2-branes into the T-dual of a supersymmetric NS fluxbrane background. We furthermore note that this background is the string theoretic realization of an Omega-deformation of flat space in the directions transverse to the branes where the deformation parameters satisfy \epsilon_1 = - \epsilon_2. This \Omega-deformation therefore serves to give supersymmetric real masses to the chiral multiplets of the 3D gauge theory. To illustrate the physical effect of the real mass term, we derive BPS-saturated classical solutions for the branes rotating in this background. Finally, we reproduce all the same structure in the presence of NS fivebranes and comment on the relationship to the gauge theory/spin-chain correspondence of Nekrasov and Shatashvili.Comment: 36 pages. References added, brane construction clarified, edited for styl

    Kinks in the dispersion of strongly correlated electrons

    Full text link
    The properties of condensed matter are determined by single-particle and collective excitations and their interactions. These quantum-mechanical excitations are characterized by an energy E and a momentum \hbar k which are related through their dispersion E_k. The coupling of two excitations may lead to abrupt changes (kinks) in the slope of the dispersion. Such kinks thus carry important information about interactions in a many-body system. For example, kinks detected at 40-70 meV below the Fermi level in the electronic dispersion of high-temperature superconductors are taken as evidence for phonon or spin-fluctuation based pairing mechanisms. Kinks in the electronic dispersion at binding energies ranging from 30 to 800 meV are also found in various other metals posing questions about their origins. Here we report a novel, purely electronic mechanism yielding kinks in the electron dispersions. It applies to strongly correlated metals whose spectral function shows well separated Hubbard subbands and central peak as, for example, in transition metal-oxides. The position of the kinks and the energy range of validity of Fermi-liquid (FL) theory is determined solely by the FL renormalization factor and the bare, uncorrelated band structure. Angle-resolved photoemission spectroscopy (ARPES) experiments at binding energies outside the FL regime can thus provide new, previously unexpected information about strongly correlated electronic systems.Comment: 8 pages, 5 figure

    A & B model approaches to surface operators and Toda theories

    Get PDF
    It has recently been argued by Alday et al that the inclusion of surface operators in 4d N=2 SU(2) quiver gauge theories should correspond to insertions of certain degenerate operators in the dual Liouville theory. So far only the insertion of a single surface operator has been treated (in a semi-classical limit). In this paper we study and generalise this proposal. Our approach relies on the use of topological string theory techniques. On the B-model side we show that the effects of multiple surface operator insertions in 4d N=2 gauge theories can be calculated using the B-model topological recursion method, valid beyond the semi-classical limit. On the mirror A-model side we find by explicit computations that the 5d lift of the SU(N) gauge theory partition function in the presence of (one or many) surface operators is equal to an A-model topological string partition function with the insertion of (one or many) toric branes. This is in agreement with an earlier proposal by Gukov. Our A-model results were motivated by and agree with what one obtains by combining the AGT conjecture with the dual interpretation in terms of degenerate operators. The topological string theory approach also opens up new possibilities in the study of 2d Toda field theories.Comment: 43 pages. v2: Added references, including a reference to unpublished work by S.Gukov; minor changes and clarifications

    Gauge Theory Wilson Loops and Conformal Toda Field Theory

    Full text link
    The partition function of a family of four dimensional N=2 gauge theories has been recently related to correlation functions of two dimensional conformal Toda field theories. For SU(2) gauge theories, the associated two dimensional theory is A_1 conformal Toda field theory, i.e. Liouville theory. For this case the relation has been extended showing that the expectation value of gauge theory loop operators can be reproduced in Liouville theory inserting in the correlators the monodromy of chiral degenerate fields. In this paper we study Wilson loops in SU(N) gauge theories in the fundamental and anti-fundamental representation of the gauge group and show that they are associated to monodromies of a certain chiral degenerate operator of A_{N-1} Toda field theory. The orientation of the curve along which the monodromy is evaluated selects between fundamental and anti-fundamental representation. The analysis is performed using properties of the monodromy group of the generalized hypergeometric equation, the differential equation satisfied by a class of four point functions relevant for our computation.Comment: 17 pages, 3 figures; references added

    Non-Perturbative Topological Strings And Conformal Blocks

    Get PDF
    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.Comment: 36 page

    Classical conformal blocks from TBA for the elliptic Calogero-Moser system

    Get PDF
    The so-called Poghossian identities connecting the toric and spherical blocks, the AGT relation on the torus and the Nekrasov-Shatashvili formula for the elliptic Calogero-Moser Yang's (eCMY) functional are used to derive certain expressions for the classical 4-point block on the sphere. The main motivation for this line of research is the longstanding open problem of uniformization of the 4-punctured Riemann sphere, where the 4-point classical block plays a crucial role. It is found that the obtained representation for certain 4-point classical blocks implies the relation between the accessory parameter of the Fuchsian uniformization of the 4-punctured sphere and the eCMY functional. Additionally, a relation between the 4-point classical block and the Nf=4N_f=4, SU(2){\sf SU(2)} twisted superpotential is found and further used to re-derive the instanton sector of the Seiberg-Witten prepotential of the Nf=4N_f=4, SU(2){\sf SU(2)} supersymmetric gauge theory from the classical block.Comment: 25 pages, no figures, latex+JHEP3, published versio

    Affine sl(N) conformal blocks from N=2 SU(N) gauge theories

    Get PDF
    Recently Alday and Tachikawa proposed a relation between conformal blocks in a two-dimensional theory with affine sl(2) symmetry and instanton partition functions in four-dimensional conformal N=2 SU(2) quiver gauge theories in the presence of a certain surface operator. In this paper we extend this proposal to a relation between conformal blocks in theories with affine sl(N) symmetry and instanton partition functions in conformal N=2 SU(N) quiver gauge theories in the presence of a surface operator. We also discuss the extension to non-conformal N=2 SU(N) theories.Comment: 40 pages. v2: minor changes and clarification
    • 

    corecore