128 research outputs found

    Thermal inactivation and conformational lock studies on glucose oxidase

    Get PDF
    In this study, the dissociative thermal inactivation and conformational lock theories are applied for the homodimeric enzyme glucose oxidase (GOD) in order to analyze its structure. For this purpose, the rate of activity reduction of glucose oxidase is studied at various temperatures using b-D-glucose as the substrate by incubation of enzyme at various temperatures in the wide range between 40 and 70 �C using UV–Vis spectrophotometry. It was observed that in the two ranges of temperatures, the enzyme has two different forms. In relatively low temperatures, the enzyme is in its dimeric state and has normal activity. In high temperatures, the activity almost disappears and it aggregates. The above achievements are confirmed by dynamic light scattering. The experimental parameter ‘‘n’’ as the obvious number of conformational locks at the dimer interface of glucose oxidase is obtained by kinetic data, and the value is near to two. To confirm the above results, the X-ray crystallography structure of the enzyme, GOD (pdb, 1gal), was also studied. The secondary and tertiary structures of the enzyme to track the thermal inactivation were studied by circular dichroism and fluorescence spectroscopy, respectively. We proposed a mechanism model for thermal inactivation of GOD based on the absence of the monomeric form of the enzyme by circular dichroism and fluorescence spectroscopy

    A biophysical study on the mechanism of interactions of DOX or PTX with α-lactalbumin as a delivery carrier

    Full text link
    © 2018, The Author(s). Doxorubicin and paclitaxel, two hydrophobic chemotherapeutic agents, are used in cancer therapies. Presence of hydrophobic patches and a flexible fold could probably make α-Lactalbumin a suitable carrier for hydrophobic drugs. In the present study, a variety of thermodynamic, spectroscopic, computational, and cellular techniques were applied to assess α-lactalbumin potential as a carrier for doxorubicin and paclitaxel. According to isothermal titration calorimetry data, the interaction between α-lactalbumin and doxorubicin or paclitaxel is spontaneous and the K (M−1) value for the interaction of α-lactalbumin and paclitaxel is higher than that for doxorubicin. Differential scanning calorimetry and anisotropy results indicated formation of α-lactalbumin complexes with doxorubicin or paclitaxel. Furthermore, molecular docking and dynamic studies revealed that TRPs are not involved in α-Lac’s interaction with Doxorubicin while TRP 60 interacts with paclitaxel. Based on Pace analysis to determine protein thermal stability, doxorubicin and paclitaxel induced higher and lower thermal stability in α-lactalbumin, respectively. Besides, fluorescence lifetime measurements reflected that the interaction between α-lactalbumin with doxorubicin or paclitaxel was of static nature. Therefore, the authors hypothesized that α-lactalbumin could serve as a carrier for doxorubicin and paclitaxel by reducing cytotoxicity and apoptosis which was demonstrated during our in vitro cell studies

    Carbon Monoxide Induced Erythroid Differentiation of K562 Cells Mimics the Central Macrophage Milieu in Erythroblastic Islands

    Get PDF
    Growing evidence supports the role of erythroblastic islands (EI) as microenvironmental niches within bone marrow (BM), where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb) is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule - CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage

    Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media

    Get PDF
    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield60 mg/mLwas achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost.The authors would like to acknowledge the Brazil National Council of Technological and Scientific Development (CNPq, FAPESP, and CAPES), the financial support from FAPESP 2009/14897-7, and Fundacao para a Ciencia e a Tecnologia (FCT)/Portugal through the project PTDC/EBB-EBI/112170/2009 for the financial support and scholarship. Special thanks to Talita Almeida Vicentin for technical support

    Is Paromomycin an Effective and Safe Treatment against Cutaneous Leishmaniasis? A Meta-Analysis of 14 Randomized Controlled Trials

    Get PDF
    Millions of people worldwide are suffering from cutaneous leishmaniasis that is caused by parasites of the genus Leishmania. Although pentavalent antimony compounds are the treatment of choice, their use is limited by high cost, poor compliance, and systemic toxicity. Paromomycin was developed to overcome such limitations. However, there is no consensus on its efficacy. This meta-analysis assessed the efficacy and safety of paromomycin compared with placebo and pentavalent antimony compounds. Fourteen randomized controlled trials, including 1,221 patients, met our selection criteria. Topical paromomycin appeared to have therapeutic activity against the old world and new world cutaneous leishmaniasis, with increased local reactions, when combined with methylbenzethonium chloride. Topical paromomycin was not significantly different from intralesional pentavalent antimony compounds in treating the old world form, whereas it was inferior to parenteral pentavalent antimony compounds in treating the new world form. However, a similar efficacy was found between parenteral paromomycin and pentavalent antimony compounds in treating the new world form. Fewer systemic side effects were observed with topical and parenteral paromomycin than pentavalent antimony compounds. These results suggest that topical paromomycin with methylbenzethonium chloride could be a therapeutic alternative to pentavalent antimony compounds for selected cases of the old world cutaneous leishmaniasis

    Методология синтеза архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки

    Get PDF
    Предложен подход к проектированию архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки в реальном времени, основанный на классификации решаемых функциональных задач на основе методов кластерного анализа и выбранного множества признаков подобия. Разработанный подход позволяет из множества функций системы выделить подобные (по определенным признакам) и объединить их в архитектурные компоненты (унифицированные функциональные модули).Запропоновано підхід до проектування архітектури центру обробки інформації автоматизованої системи моніторингу середовища в реальному часі, що заснований на класифікації функціональних задач на підставі методів кластерного аналізу і обраної множини ознак схожості. Розроблений підхід дозволяє вибрати із множини функцій системи схожі (за певними ознаками) і поєднати їх в архітектурні компоненти (уніфіковані функціональні модулі).The approach to designing architecture of the information processing complex of the automated real time conditions monitoring system based on classification of functional tasks on the basis of methods of cluster analysis and the chosen set of similarity attributes is offered. The developed approach allows to allocate from a set of functions the systems similar (on certain attributes) and to unite them in architectural components (unified functional modules)

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore