349 research outputs found

    Axion searches with the EDELWEISS-II experiment

    Full text link
    We present new constraints on the couplings of axions and more generic axion-like particles using data from the EDELWEISS-II experiment. The EDELWEISS experiment, located at the Underground Laboratory of Modane, primarily aims at the direct detection of WIMPs using germanium bolometers. It is also sensitive to the low-energy electron recoils that would be induced by solar or dark matter axions. Using a total exposure of up to 448 kg.d, we searched for axion-induced electron recoils down to 2.5 keV within four scenarios involving different hypotheses on the origin and couplings of axions. We set a 95% CL limit on the coupling to photons gAγ<2.13×10−9g_{A\gamma}<2.13\times 10^{-9} GeV−1^{-1} in a mass range not fully covered by axion helioscopes. We also constrain the coupling to electrons, gAe<2.56×10−11g_{Ae} < 2.56\times 10^{-11}, similar to the more indirect solar neutrino bound. Finally we place a limit on gAe×gANeff<4.70×10−17g_{Ae}\times g_{AN}^{\rm eff}<4.70 \times 10^{-17}, where gANeffg_{AN}^{\rm eff} is the effective axion-nucleon coupling for 57^{57}Fe. Combining these results we fully exclude the mass range 0.91 eV<mA<800.91\,{\rm eV}<m_A<80 keV for DFSZ axions and 5.73 eV<mA<405.73\,{\rm eV}<m_A<40 keV for KSVZ axions

    Investigating the effectiveness and feasibility of exercise on microvascular reactivity and quality of life in systemic sclerosis patients: study protocol for a feasibility study

    Get PDF
    Background: Raynaud’s phenomenon is one of the first clinical manifestations observed in systemic sclerosis (SSc). This microvasculature disorder affects mostly the digits in over 95% of SSc patients, significantly affecting their healthrelated quality of life (HRQoL) and incurring higher hospital admissions and other healthcare costs. Exercise is known to improve both micro- and macrovascular function – aerobic exercise and resistance training, separately or combined, have been demonstrated to lead to significant vasculo-physiological improvements in conditions that present vasculopathy. However, the effects of a combined exercise programme on microcirculation in SSc patients has yet to be investigated. Therefore, the purpose of this study is to assess the effects of high-intensity interval training (HIIT) combined with circuit resistance training on the microvascular function in the digital area of SSc patients. Methods: This will be a randomised controlled, feasibility trial with two arms, wherein 30 patients with SSc in receipt of medical treatment will be randomly assigned to usual care (medical treatment) or to a 12-week supervised exercise programme. Patients in the exercise group will undertake two, 45-min sessions each week consisting of 30 min HIIT (30 s 100% peak power output/30 s passive recovery) on the arm crank ergometer and 15 min of upper body circuit resistance training. Patients will be assessed before as well as at 3 and 6 months following randomisation. Primary outcomes of the study will be recruitment and retention rate, intervention acceptability and adherence to the exercise programme. Secondary outcomes include the digital area cutaneous microvascular function (laser Doppler fluximetry combined with iontophoresis), physical fitness, functional ability, upper back transcutaneous oxygen tension, body composition and quality of life (EQ-5D-5L). Selected interviews with a subsample of patients will be undertaken to explore their experiences of having Raynaud’s phenomenon and the acceptability of the exercise intervention and study procedures. Discussion: Data from this study will be used to identify the feasibility of a combined exercise programme to be implemented in SSc patients, the acceptability of the intervention and the study design, and to determine the effects of exercise on the microvasculature. Overall, this study will provide sufficient data to inform and support a full multicentre clinical trial

    Induction of Interferon-Stimulated Genes by Chlamydia pneumoniae in Fibroblasts Is Mediated by Intracellular Nucleotide-Sensing Receptors

    Get PDF
    BACKGROUND: Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice. METHODS/PRINCIPAL FINDINGS: Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS). CONCLUSIONS/SIGNIFICANCE: Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection

    Clinical predictors of elective total joint replacement in persons with end-stage knee osteoarthritis

    Get PDF
    Abstract Background Arthritis is a leading cause of disability in the United States. Total knee arthroplasty (TKA) has become the gold standard to manage the pain and disability associated with knee osteoarthritis (OA). Although more than 400 000 primary TKA surgeries are performed each year in the United States, not all individuals with knee OA elect to undergo the procedure. No clear consensus exists on criteria to determine who should undergo TKA. The purpose of this study was to determine which clinical factors will predict the decision to undergo TKA in individuals with end-stage knee OA. Knowledge of these factors will aid in clinical decision making for the timing of TKA. Methods Functional data from one hundred twenty persons with end-stage knee OA were obtained through a database. All of the individuals complained of knee pain during daily activities and had radiographic evidence of OA. Functional and clinical tests, collectively referred to as the Delaware Osteoarthritis Profile, were completed by a physical therapist. This profile consisted of measuring height, weight, quadriceps strength and active knee range of motion, while functional mobility was assessed using the Timed Up and Go (TUG) test and the Stair Climbing Task (SCT). Self-perceived functional ability was measured using the activities of daily living subscale of the Knee Outcome Survey (KOS-ADLS). A logistic regression model was used to identify variables predictive of TKA use. Results Forty subjects (33%) underwent TKA within two years of evaluation. These subjects were significantly older and had significantly slower TUG and SCT times (p 2 = 0.403). Conclusions Younger patients with full knee ROM who have a higher self-perception of function are less likely to undergo TKA. Physicians and clinicians should be aware that potentially modifiable factors, such as knee ROM can be addressed to potentially postpone the need for TKA.</p

    Origin of Polar Order in Dense Suspensions of Phototactic Micro-Swimmers

    Get PDF
    A main question for the study of collective motion in living organisms is the origin of orientational polar order, i.e., how organisms align and what are the benefits of such collective behaviour. In the case of micro-organisms swimming at a low Reynolds number, steric repulsion and long-range hydrodynamic interactions are not sufficient to explain a homogeneous polar order state in which the direction of motion is aligned. An external symmetry-breaking guiding field such as a mechanism of taxis appears necessary to understand this phonemonon. We have investigated the onset of polar order in the velocity field induced by phototaxis in a suspension of a motile micro-organism, the algae Chlamydomonas reinhardtii, for density values above the limit provided by the hydrodynamic approximation of a force dipole model. We show that polar order originates from a combination of both the external guiding field intensity and the population density. In particular, we show evidence for a linear dependence of a phototactic guiding field on cell density to determine the polar order for dense suspensions and demonstrate the existence of a density threshold for the origin of polar order. This threshold represents the density value below which cells undergoing phototaxis are not able to maintain a homogeneous polar order state and marks the transition to ordered collective motion. Such a transition is driven by a noise dominated phototactic reorientation where the noise is modelled as a normal distribution with a variance that is inversely proportional to the guiding field strength. Finally, we discuss the role of density in dense suspensions of phototactic micro-swimmers

    Antiangiogenic drugs in ovarian cancer

    Get PDF
    Ovarian cancer continues to be a major cause of morbidity and mortality in women. Antiangiogenic treatments have emerged as a promising strategy to treat ovarian cancer. This article reviews the rationale supporting the use of antiangiogenic treatments in ovarian cancer, the clinical development of this group of drugs and the toxicities specific to this modality of treatment
    • …
    corecore