32 research outputs found

    Absolute calibration of Analog Detectors using Stimulated Parametric Down Conversion

    Full text link
    Spontaneous parametric down conversion has been largely exploited as a tool for absolute calibration of photon counting detectors, photomultiplier tubes or avalanche photodiodes working in Geiger regime. In this work we investigate the extension of this technique from very low photon flux of photon counting regime to the absolute calibration of analog photodetectors at higher photon flux. Moving toward higher photon rate, i.e. at high gain regime, with the spontaneous parametric down conversion shows intrinsic limitations of the method, while the stimulated parametric down conversion process, where a seed beam properly injected into the crystal in order to increase the photon generation rate in the conjugate arm, allows us to work around this problem. A preliminary uncertainty budget is discussed

    HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.

    Get PDF
    The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders

    Large-Scale Evidence for Conservation of NMD Candidature Across Mammals

    Get PDF
    BACKGROUND: Alternatively-spliced (AS) forms can vary protein function, intracellular localization and post-translational modifications. AS coupled with mRNA nonsense-mediated decay (NMD) can also control the transcript abundance. Here, we have investigated the genome-scale conservation of alternatively-spliced NMD candidates (AS-NMD candidates), in mammals. METHODOLOGY/PRINCIPAL FINDINGS: We mapped>12 million cDNA/EST library transcripts, comprising pooled data from both older and next-generation sequencing techniques, against genomic sequences to annotate AS-NMD candidates generated by in-frame premature termination codons (PTCs), in the human, mouse, rat and cow genomes. In these genomes, we found populations of genes that harbour AS-NMD candidates, varying in number from approximately 149 to 2,051 genes. We discovered that a highly-significant proportion (27%-35%) of AS-NMD candidate genes in mouse, rat and cow, also have human orthologs targeted for NMD. Intron retention was the most abundant type of AS-NMD, ranging from 43% to 67% of genes harbouring an AS-NMD candidate. Groupings of AS-NMD candidate genes either with or without intron retentions also have highly significant AS-NMD conservation, indicating that the trend is not due primarily to conservation of intron retentions. As a subset, the AS-NMD intron retentions are distinguished from non-retained introns by higher GC content, and codon usage similar to the usage in protein-coding sequences. This indicates that most of these alternatively spliced sequences have coded for proteins in the recent evolutionary past. In general, the AS-NMD candidate genes showed a similar pattern of Gene Ontology functional category enrichments in all four species. Genes linked to nucleic-acid interaction and apoptosis, and involved in pathways linked with cancer, were the most common. Finally, we mapped the AS-NMD candidates to mass spectrometry-derived proteomics data, and gathered evidence of truncated polypeptides for at least 10% of all human AS-NMD candidate transcripts. CONCLUSIONS/SIGNIFICANCE: In summary, our analysis provides strong statistical evidence for conservation of functional AS-NMD candidature across Mammalia for a large subset of genes. However, because codon usage of AS-NMD intron retentions is similar to the usage in exons, it is difficult to de-couple conservation of AS-NMD-based regulation from conservation for protein-coding ability, for intron retentions

    Assessment of the Red Cell Proteome of Young Patients with Unexplained Hemolytic Anemia by Two-Dimensional Differential In-Gel Electrophoresis (DIGE)

    Get PDF
    Erythrocyte cytosolic protein expression profiles of children with unexplained hemolytic anemia were compared with profiles of close relatives and controls by two-dimensional differential in-gel electrophoresis (2D-DIGE). The severity of anemia in the patients varied from compensated (i.e., no medical intervention required) to chronic transfusion dependence. Common characteristics of all patients included chronic elevation of reticulocyte count and a negative workup for anemia focusing on hemoglobinopathies, morphologic abnormalities that would suggest a membrane defect, immune-mediated red cell destruction, and evaluation of the most common red cell enzyme defects, glucose-6-phosphate dehydrogenase and pyruvate kinase deficiency. Based upon this initial workup and presentation during infancy or early childhood, four patients classified as hereditary nonspherocytic hemolytic anemia (HNSHA) of unknown etiology were selected for proteomic analysis. DIGE analysis of red cell cytosolic proteins clearly discriminated each anemic patient from both familial and unrelated controls, revealing both patient-specific and shared patterns of differential protein expression. Changes in expression pattern shared among the four patients were identified in several protein classes including chaperons, cytoskeletal and proteasome proteins. Elevated expression in patient samples of some proteins correlated with high reticulocyte count, likely identifying a subset of proteins that are normally lost during erythroid maturation, including proteins involved in mitochondrial metabolism and protein synthesis. Proteins identified with patient-specific decreased expression included components of the glutathione synthetic pathway, antioxidant pathways, and proteins involved in signal transduction and nucleotide metabolism. Among the more than 200 proteins identified in this study are 21 proteins not previously described as part of the erythrocyte proteome. These results demonstrate the feasibility of applying a global proteomic approach to aid characterization of red cells from patients with hereditary anemia of unknown cause, including the identification of differentially expressed proteins as potential candidates with a role in disease pathogenesis

    Diverse Forms of RPS9 Splicing Are Part of an Evolving Autoregulatory Circuit

    Get PDF
    Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and in that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. To test for similar intron function in animals, we performed an experimental test and comparative analyses for autoregulation among distantly related animal RPS9 orthologs. Overexpression of an exogenous RpS9 copy in Drosophila melanogaster S2 cells induced alternative splicing and degradation of the endogenous copy by nonsense-mediated decay (NMD). Also, analysis of expressed sequence tag data from distantly related animals, including Homo sapiens and Ciona intestinalis, revealed diverse alternatively-spliced RPS9 isoforms predicted to elicit NMD. We propose that multiple forms of splicing regulation among RPS9 orthologs from various eukaryotes operate analogously to translational repression of the alpha operon by S4, the distant prokaryotic ortholog. Thus, RPS9 orthologs appear to have independently evolved variations on a fundamental autoregulatory circuit

    Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats

    Get PDF
    corecore