6,000 research outputs found

    Comment on 'Geoengineering with seagrasses: Is credit due where credit is given?'

    Get PDF
    Over the past decade scientists around the world have sought to estimate the capacity of seagrass meadows to sequester carbon, and thereby understand their role in climate change mitigation. The number of studies reporting on seagrass carbon accumulation rates is still limited, but growing scientific evidence supports the hypothesis that seagrasses have been efficiently locking away CO2 for decades to millennia (e.g. Macreadie et al 2014, Mateo et al 1997, Serrano et al 2012). Johannessen and Macdonald (2016), however, challenge the role of seagrasses as carbon traps, claiming that gains in carbon storage by seagrasses may be \u27illusionary\u27 and that \u27their contribution to the global burial of carbon has not yet been established\u27. The authors warn that misunderstandings of how sediments receive, process and store carbon have led to an overestimation of carbon burial by seagrasses. Here we would like to clarify some of the questions raised by Johannessen and Macdonald (2016), with the aim to promote discussion within the scientific community about the evidence for carbon sequestration by seagrasses with a view to awarding carbon credits

    Local association of Trypanosoma cruzi chronic infection foci and enteric neuropathic lesions at the tissue micro-domain scale

    Get PDF
    Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypanosoma cruzi. Chagas disease has two types, the cardiac form and the digestive form; some patients have symptoms of both. How the parasite causes digestive disease is poorly understood. It is known that damage to the gut’s nervous system is an important factor, but it has been unclear exactly where and when this damage occurs during the course of an infection and also why only a subset of infected people suffer from this outcome. We studied infections in mice and found certain combinations of strains of parasites and mice that exhibited symptoms similar to human digestive Chagas patients, including a problem with peristalsis that localised specifically to the colon. Using parasites that were genetically engineered to emit both bioluminescent and fluorescent light, we tracked infections over time and were able to analyse rare infected cells deep within the muscle tissue of the wall of the colon. We found evidence of damaged neurons in the same location as these infection foci over 6 months after initial infection. Our results show that digestive Chagas disease probably develops as a result of chronic infection and inflammation, which potentially changes approaches to treatment

    Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values

    Get PDF
    In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation (R2) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day-to-day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014 to 2022 at a resolution of 1s, and transform it from a time-series into a 6-dimensional space with a corresponding EPB R2 (0–1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post-sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset

    In Vivo Analysis of Trypanosoma cruzi Persistence Foci at Single-Cell Resolution

    Get PDF
    Infections with Trypanosoma cruzi are usually lifelong despite generating a strong adaptive immune response. Identifying the sites of parasite persistence is therefore crucial to understanding how T. cruzi avoids immune-mediated destruction. However, this is a major technical challenge, because the parasite burden during chronic infections is extremely low. Here, we describe an integrated approach involving comprehensive tissue processing, ex vivo imaging, and confocal microscopy, which allowed us to visualize infected host cells in murine tissue with exquisite sensitivity. Using bioluminescence-guided tissue sampling, with a detection level of 200 parasites, which we term mega-nests. In contrast, during the acute stage, when the total parasite burden is considerably higher and many cells are infected, nests containing >50 parasites are rarely found. In C3H/HeN mice, but not BALB/c mice, we identified skeletal muscle as a major site of persistence during the chronic stage, with most parasites being found in large mega-nests within the muscle fibers. Finally, we report that parasites are also frequently found in the skin during chronic murine infections, often in multiple infection foci. In addition to being a site of parasite persistence, this anatomical reservoir could play an important role in insect-mediated transmission and have implications for drug development.IMPORTANCETrypanosoma cruzi causes Chagas disease, the most important parasitic infection in Latin America. Major pathologies include severe damage to the heart and digestive tract, although symptoms do not usually appear until decades after infection. Research has been hampered by the complex nature of the disease and technical difficulties in locating the extremely low number of parasites. Here, using highly sensitive imaging technology, we reveal the sites of parasite persistence during chronic-stage infections of experimental mice at single-cell resolution. We show that parasites are frequently located in smooth muscle cells in the circular muscle layer of the colon and that skeletal muscle cells and the skin can also be important reservoirs. This information provides a framework for investigating how the parasite is able to survive as a lifelong infection, despite a vigorous immune response. It also informs drug development strategies by identifying tissue sites that must be accessed to achieve a curative outcome

    Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico (with track change)

    Get PDF
    Antioxidant activity diphenylpicrylhydrazyl (DPPH), the ferric-reducing antioxidant power assay (FRAP), nitric oxide (NO)], total polyphenols, phenolic compounds and ascorbic acid of Morinda citrifolia L. fruits were investigated as a function of maturity and three seasons patterns in Mexico. Maturity was evaluated in early, middle, sub-mature and mature stages (1 to 4) according to color and firmness. Significant differences were observed in the antioxidant activities and chemical composition of the fruits at different maturity and seasons. During February-March and May- June, fruits from middle and mature stages exhibited the highest antioxidant activities and total polyphenol content compared to other stages, while in November, ripe fruits reached the greatest antioxidant efficacy, total phenolic and ascorbic acid contents. Total polyphenols and ascorbic acid reached the highest amounts during May-June, although antioxidant activities were moderate compared to greater values in February-March or November depending upon maturity. The ability of M. citrifolia fruits to inhibit NO production by LPSactivated RAW 264.7 cells was quite comparable to or higher than N-nitro-L-arginine methyl ester (LNAME). This work shows that season and maturity stages have a profound effect on the antioxidant capacity, phenols and ascorbic acid of M. Citrifolia fruits.Keywords: Morinda citrifolia, diphenylpicrylhydrazyl (DPPH) radical scavenging, maturity, seasons, total polyphenol and phenolics compounds, reducing power, ascorbic acid, scavenging nitric oxide.African Journal of Biotechnology Vol. 12(29), pp. 4630-463

    Classroom based cognitive behavioural therapy in reducing symptoms of depression in high risk adolescents: Pragmatic cluster randomised controlled trial

    Get PDF
    Copyright © 2012 by the BMJ Publishing Group Ltd. This articles was first published in: BMJ, 2012, Vol. 345, Issue 7878Objective To compare the effectiveness of classroom based cognitive behavioural therapy with attention control and usual school provision for adolescents at high risk of depression. Design Three arm parallel cluster randomised controlled trial. Setting Eight UK secondary schools. Participants Adolescents (n=5030) aged 12-16 years in school year groups 8-11. Year groups were randomly assigned on a 1:1:1 ratio to cognitive behavioural therapy, attention control, or usual school provision. Allocation was balanced by school, year, number of students and classes, frequency of lessons, and timetabling. Participants were not blinded to treatment allocation. Interventions Cognitive behavioural therapy, attention control, and usual school provision provided in classes to all eligible participants. Main outcome measures Outcomes were collected by self completed questionnaire administered by researchers. The primary outcome was symptoms of depression assessed at 12 months by the short mood and feelings questionnaire among those identified at baseline as being at high risk of depression. Secondary outcomes included negative thinking, self worth, and anxiety. Analyses were undertaken on an intention to treat basis and accounted for the clustered nature of the design. Results 1064 (21.2%) adolescents were identified at high risk of depression: 392 in the classroom based cognitive behavioural therapy arm, 374 in the attention control arm, and 298 in the usual school provision arm. At 12 months adjusted mean scores on the short mood and feelings questionnaire did not differ for cognitive behavioural therapy versus attention control (−0.63, 95% confidence interval −1.85 to 0.58, P=0.41) or for cognitive behavioural therapy versus usual school provision (0.97, −0.20 to 2.15, P=0.12). Conclusion In adolescents with depressive symptoms, outcomes were similar for attention control, usual school provision, and cognitive behavioural therapy. Classroom based cognitive behavioural therapy programmes may result in increased self awareness and reporting of depressive symptoms but should not be undertaken without further evaluation and research. Trial registration Current Controlled Trials ISRCTN19083628

    Directed Evolution of Protein-Based Neurotransmitter Sensors for MRI

    Get PDF
    The production of contrast agents sensitive to neuronal signaling events is a rate-limiting step in the development of molecular-level functional magnetic resonance imaging (molecular fMRI) approaches for studying the brain. High-throughput generation and evaluation of potential probes are possible using techniques for macromolecular engineering of protein-based contrast agents. In an initial exploration of this strategy, we used the method of directed evolution to identify mutants of a bacterial heme protein that allowed detection of the neurotransmitter dopamine in vitro and in living animals. The directed evolution method involves successive cycles of mutagenesis and screening that could be generalized to produce contrast agents sensitive to a variety of molecular targets in the nervous system
    • …
    corecore