76 research outputs found

    Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis

    Get PDF
    Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1

    Involvement of JNK-mediated pathway in EGF-mediated protection against paclitaxel-induced apoptosis in SiHa human cervical cancer cells

    Get PDF
    We investigated the signalling pathways by which epidermal growth factor (EGF) modulates paclitaxel-induced apoptosis in SiHa human cervical cancer cells. SiHa cells exposed to paclitaxel underwent apoptosis, which was strongly inhibited by EGF. This inhibition of apoptosis by EGF was not altered by pharmacological blockade of phosphatidylinositol 3′-OH kinase (PI-3K) with the PI-3K specific inhibitor LY294002 or blockade of the mitogen-activated protein kinase (MAPK) kinase (MEK) with the MEK specific inhibitor PD98059, or by transfection of the cells with PI-3K or MEK dominant-negative expression vectors. EGF did not stimulate PI-3K/Akt, MEK/MAPK, or p38 MAPK activity in SiHa cells but did transiently activate the c-Jun NH2-terminal kinase (JNK). Co-exposure of SiHa cells to SB202190 at concentrations that inhibit JNK abolished the protective effect of EGF on SiHa cells against paclitaxel-induced apoptosis. Our findings indicate that the JNK signaling pathway plays an important role in EGF-mediated protection from paclitaxel-induced apoptosis in SiHa cells. © 2001 Cancer Research Campaign http://www.bjcancer.co

    The Interleukin-6 inflammation pathway from cholesterol to aging – Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases

    Get PDF
    We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation

    New means to assess neonatal inflammatory brain injury

    Full text link
    • …
    corecore