68 research outputs found

    An ontological framework for cooperative games

    Get PDF
    Social intelligence is an emerging property of a system composed of agents that consists of the ability of this system to conceive, design, implement and execute strategies to solve problems and thus achieve a collective state of the system that is concurrently satisfactory for all and each one of the agents that compose it. In order to make decisions when dealing with complex problems related to social systems and take advantage of social intelligence, cooperative games theory constitutes the standard theoretical framework. In the present work, an ontological framework for cooperative games modeling and simulation is presented

    A hierarchical model for the cash transfer system design problem

    Get PDF
    This paper presents a hierarchical model that incorporates strategic, tactical, and operational decisions of cash transfer management system of a bank. The aim of the model is to decide on the location of cash management centers, the number and routes of vehicles, and the cash inventory management policies to minimize the cost of owning and operating a cash transfer system while maintaining a pre-defined service level. Owing to the difficulty of finding optimal decisions in such integrated models, an iterative solution approach is proposed in which strategic, tactical, and operational problems are solved separately via a feedback mechanism. Numerical results show that such an approach is quite effective in reaching at greatly improved solutions with just a few iterations, making it a very promising approach for similar models

    Proliferation rates of multiple endocrine neoplasia type 1 (MEN1)-associated tumors.

    No full text
    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the combined occurrence of parathyroid and adrenocortical tumors, and neuroendocrine tumors (NETs) of the pancreas and pituitary. The pancreatic NETs are predominantly gastrinomas and insulinomas, and the pituitary NETs are mostly prolactinomas and somatotrophinomas. We postulated that the different types of pancreatic and pituitary NETs may be partly due to differences in their proliferation rates, and we therefore assessed these in MEN1-associated tumors and gonadal tumors that developed in mice deleted for an Men1 allele (Men1(+/-)). To label proliferating cells in vivo, Men1(+/-) and wild-type (Men1(+/+)) mice were given 5-bromo-2-deoxyuridine (BrdU) in drinking water from 1-12 wk, and tissue sections were immunostained using anti-BrdU and hormone-specific antibodies. Proliferation in the tumors of Men1(+/-) mice was significantly (P < 0.001) increased when compared with the corresponding normal Men1(+/+) tissues. Pancreatic, pituitary and adrenocortical proliferation fitted first- and second-order regression lines in Men1(+/+) tissues and Men1(+/-) tumors, respectively, R(2) = 0.999. Apoptosis was similar in Men1(+/-) pancreatic, pituitary, and parathyroid tumors when compared with corresponding normal tissues, decreased in Men1(+/-) adrenocortical tumors, but increased in Men1(+/-) gonadal tumors. Mathematical modeling of NET growth rates (proliferation minus apoptosis rates) predicted that in Men1(+/-) mice, only pancreatic β-cells, pituitary lactotrophs and somatotrophs could develop into tumors within a murine lifespan. Thus, our studies demonstrate that Men1(+/-) tumors have low proliferation rates (<2%), second-order kinetics, and the higher occurrence of insulinomas, prolactinomas, and somatotrophinomas in MEN1 is consistent with a mathematical model for NET proliferation

    MEN1 gene replacement therapy reduces proliferation rates in a mouse model of pituitary adenomas.

    No full text
    Multiple endocrine neoplasia type 1 (MEN1) is characterized by the combined occurrence of pituitary, pancreatic, and parathyroid tumors showing loss of heterozygosity in the putative tumor suppressor gene MEN1. This gene encodes the protein menin, the overexpression of which inhibits cell proliferation in vitro. In this study, we conducted a preclinical evaluation of MEN1 gene therapy in pituitary tumors of Men1(+/-) mice, using a recombinant nonreplicating adenoviral serotype 5 vector that contained the murine Men1 cDNA under control of a cytomegalovirus promoter (Men1.rAd5). Pituitary tumors in 55 Men1(+/-) female mice received a transauricular intratumoral injection of Men1.rAd5 or control treatments, followed by 5-bromo-2-deoxyuridine (BrdUrd) in drinking water for four weeks before magnetic resonance imaging (MRI) and immunohistochemical analysis. Immediate procedure-related and 4-week mortalities were similar in all groups, indicating that the adenoviral gene therapy was not associated with a higher mortality. Menin expression was higher in the Men1.rAd5-treated mice when compared with other groups. Daily proliferation rates assessed by BrdUrd incorporation were reduced significantly in Men1.rAd5-injected tumors relative to control-treated tumors. In contrast, apoptotic rates, immune T-cell response, and tumor volumes remained similar in all groups. Our findings establish that MEN1 gene replacement therapy can generate menin expression in pituitary tumors, and significantly reduce tumor cell proliferation
    corecore