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Abstract. This paper presents a hierarchical model that incorporates
strategic, tactical, and operational decisions of cash transfer management
system of a bank. The aim of the model is to decide on the location
of cash management centers, the number and routes of vehicles, and
the cash inventory management policies to minimize the cost of owning
and operating a cash transfer system while maintaining a pre-defined
service level. Owing to the difficulty of finding optimal decisions in such
integrated models, an iterative solution approach is proposed in which
strategic, tactical, and operational problems are solved separately via a
feedback mechanism. Numerical results show that such an approach is
quite effective in reaching at greatly improved solutions with just a few
iterations, making it a very promising approach for similar models.
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1 Introduction

A major function of a bank is to act as an intermediary between its clients by col-
lecting deposits from some while dispensing cash to the others. Typically, banks
perform these operations via their branches and automated banking machines
located across a geographical market. Since such transactions are naturally un-
certain, cash positions at branches change randomly throughout the day.

Effective management of cash positions at branches is critical. Banks do not
prefer to carry extra cash due to opportunity cost is associated with it. Any extra
cash can be deposited to central banks or loaned to other banks for overnight
interest. Furthermore, extra cash makes banks susceptible to theft, fraud, and
so on. Falling short of necessary cash, however, is also undesirable and perhaps,
even more harmful. Client requests for withdrawal should be met immediately or
with very little delay as failure to do so may have severe negative consequences
such as loss of goodwill or even loss of confidence.

Therefore, banks need to transfer cash in and out of branches to manage these
inventories in a rational way. A cash transfer system has two main sets of cost
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items. The first set includes operational costs of managing a system such as fixed
and variable costs related to the cash management centers (CMCs) and armored
vehicles (AVs) while the second set includes opportunity and shortage costs of
having too much or too little cash at the branches. An effective management
of a cash transfer system should trade-off these costs when making design and
operational decisions in the system.

In this paper we present a hierarchical model and an iterative solution ap-
proach for a cash transfer management system design problem. Our model falls
into the general class of integrated location-routing-inventory models. The liter-
ature on integrated models for any pair of these decisions is relatively well devel-
oped. A comprehensive review on integrated location-routing, location-inventory,
and inventory-routing problems is provided by Shen (2007). Other papers, such
as Melo, Nickel, and Saldanha-da-Gama (2009) as well as Klibi, Martel, and Gui-
touni (2010) give a review of supply chain design models that include integrated
facility location models. In cash logistics context, recently there are few papers
for inventory-routing problems (Wagner 2010 and van Anholt et al. 2013). How-
ever, the literature that consider all three levels of decisions is scant and those
that present such integrated models report a very limited results.

In one of the earlier works Ambrosino and Scutella (2005) study a detailed
location-routing model in a four-layer distribution network. A more concise
model that considers inventories in a similar manner is presented in Hiassat
and Diabat (2011). However, neither papers gave any numerical experimenta-
tion of a reasonable detail but rather solved only a very small instance. Shen
and Qi (2007) is perhaps the first study that explicitly considers cycle and safety
inventory costs and routing in a location problem. However, they do not con-
sider detailed routing decisions; instead they develop an approximation for the
routing cost and incorporate it in a nonlinear program.

The model closest to ours is given in Javid and Azad (2010), in which authors
study a capacitated facility location problem that explicitly considers routing
and inventory decisions. They first formulate the problem as a mixed-integer
convex problem, which is solved by LINDO for small sized problems. The largest
problem that was solved to optimality within 12 hours by LINDO had three
potential DCs, two vehicles, and nine customers. For larger size problems they
utilize a hybrid Tabu Search and Simulated Annealing heuristic method. They
solved problems as large as 50 potential DCs, 65 vehicles, and 400 customers.

Our paper introduces a novel addition to this growing literature. First, the
very few models that explicitly include routing and inventory decisions along
with location decisions consider a “traditional” inventory management setting.
We on the other hand deal with a cash inventory setting, which is perhaps the
first considered in a network design problem here. Even though cash inventory
management is an area that has not received enough attention in logistics liter-
ature, with the continuing general economic climate of low-interest borrowing,
logistics and other operational costs have become more important determinants
of the profitability of financial institutions. Our work offers a step towards ad-
dressing this research gap in the literature.
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Secondly, we propose an iterative solution method for the problem, instead
of dealing with approximate integrated models or meta-heuristics as most past
works do. We obtain promising results on the performance of an iterative ap-
proach that solves a series of simpler problems with updated parameters. Finally,
we generate problem instances based mostly on the real-life data we obtained
from a commercial bank. Some of this data can be used in future studies.

In the rest of this paper we first present the model and the iterative approach.
Section 3 contains the description of parameter estimation and instance genera-
tion followed by reporting of the set of numerical experiments. We conclude the
paper with few remarks and avenues for future research in Section 4.

2 The model

Our approach consists of a series of well-known problems for strategic, tactical,
and operational decisions and an iterative solution method to reach an optimal
or near-optimal solution. We consider a location problem at the strategic level, a
vehicle routing problem at the tactical level, and a cash management problem at
the operational level. The fourth problem, termed as a vehicle number determi-
nation problem, is a peculiar tactical problem that ties these three problems in
the iterative solution approach we developed. Each of the following subsections
is devoted to the exposition of one problem and its relationship to the other
problems as well as to the overall iterative procedure.

2.1 Strategic problem: An uncapacitated facility location problem
(UFLP)

The strategic problem is an extension of the standard UFLP that determines
the CMC locations and CMC-branch assignments so as to minimize the total
cost. In addition to the location and assignment variables, we defined a third set
of decision variables for the number of vehicles to take transportation capacity
and cost of the AVs into account, albeit approximately. These extensions add a
bit more realism to the fixed and variable cost structures and are expected to
lead to better location decisions.

We consider an uncapacitated case, as it is usually easy to increase capacity
at these centers by acquiring additional machinery or hiring new personnel.
The vehicles also have annual fixed costs such as tax, insurance, as well as
personnel costs. Transportation costs are incorporated approximately through
CMC-branch assignment as typical in facility location problems.

Let the index i ∈ I = {1, 2, . . . ,m} represent the alternative CMC loca-
tions and the index j ∈ J = {1, 2, . . . , n} represent the branches. The decision
variables used in our version of UFLP are:

yi =

{
1, if CMC at location i opened,
0, otherwise,

zi = The number of AVs assigned to CMC at location i.
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xij =

{
1, if the branch j is assigned to CMC at location i,
0, otherwise.

The parameters are given as:
fi : Fixed cost of opening a CMC at location i,
gi : Fixed cost of an AV assigned to CMC at location i,
aij : Direct trip cost between locations i and j,
sij : Direct travel time between the CMC at location i and the branch at j,
S : Maximum total time an AV can be used in a year.
Our iterative approach requires some of these parameters to be revised at

each iteration. To facilitate it, we also define the following iteration parameters:
αt−1 : System-wide ratio of total route length to total direct travel

(including backhaul),
kt−1
j : The number of cash transfer requests made by branch j.

These parameters are revised at each iteration of the algorithm and the
superscript (t−1) refers to the values obtained in the previous iteration. Although
the impact of α and k are combined in the formulation, we chose to separately
represent them since they are obtained from different problems. Given all the
variables and parameters, the strategic problem can be formulated as follows:

Minimize
∑
i∈I

fiyi +
∑
i∈I

gizi +
∑
i∈I

∑
j∈J

αt−1kt−1
j aijxij (1)

subject to
∑
i∈I

xij = 1, for all j ∈ J, (2)

xij ≤ yi, for all i ∈ I, j ∈ J, (3)∑
i∈J

αt−1kt−1
j sijxij ≤ Szi, for all i ∈ I, (4)

yi and xij ∈ {0, 1}, for all i ∈ I and j ∈ J, (5)

zi ∈ {0, 1, . . .} for all i ∈ I. (6)

Objective function (1) includes the fixed costs of CMCs and AVs and the
direct transportation cost, which is adjusted with a routing factor and the ap-
proximate number of trips to a particular branch. Constraints (2) and (3) are
the standard constraints in UFLP which ensure that each branch is assigned
to one open CMC. Constraints (4) ensure that there are enough vehicles that
cover the anticipated total travel time at each CMC. This constraint provides a
rough-cut estimate of the minimum number of vehicles without considering the
detailed routing issues. Finally, (5) and (6) define the binary and general integer
variables.

2.2 Tactical problem: A Vehicle Routing Problem (VRP)

Our tactical model is a version of VRP, in which the location of CMCs and CMC-
branch assignments from the UFLP are given as input. A VRP is solved for each
CMC to determine the number of vehicles and their routes that minimize the
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total vehicle and traveling costs. Let ni denote the number of branches assigned
to CMC i and the set Ji = {1, . . . , ni} denote those branches. Indices j = 0 and
j = ni +1 are used to indicate the start and the end of the tours, i.e., the CMC
location. For notational conciseness we also define new sets as J i = Ji ∪{0} and
J i = Ji ∪ {ni + 1}. Furthermore, let

ujk =

{
1, if the branch k is visited immediately after branch j,
0, otherwise, and

tj = The time branch j starts receiving the service.

The problem parameters are defined as:
sjk : Trip time from branch j to branch k,
h : Average service time at a branch,
B : The length of a shift,
M : A large number.

We also define an iterative parameter βt−1 as the average aggregate trip
frequency of routes. Our VRP can be modeled as:

Minimize gi
∑
j∈Ji

u0j + βt−1
∑
j∈Ji

∑
k∈Ji

ajkujk (7)

subject to
∑

j∈Ji,j ̸=k

ujk = 1, for all k ∈ Ji, (8)

∑
k∈Ji,k ̸=j

ujk = 1, for all j ∈ Ji, (9)

tj ≥ s0j −M(1− u0j), for all j ∈ Ji, (10)

tk ≥ tj + sjk + h−M(1− ujk), for all j ∈ Ji and k ∈ J i, (11)

tni+1 ≤ B, (12)

ujk ∈ {0, 1}, and tj ≥ 0 for all j ∈ Ji and k ∈ J i. (13)

The objective function consists of the fixed vehicle costs and the total trip
costs. Constraints (8-11) are standard constraints in VRPs. Constraints (8) en-
sure that each branch is visited by a vehicle and (9) ensure that each vehicle also
leaves a branch it has visited. Constraints (10) and (11) ensure that vehicles are
given sufficient time for service and travel between visiting branches. Finally, the
condition on the shift length is given in (12) and the non-negativity and binary
restrictions are given in (13).

While CMC locations and assignments to branches are given as input from
the strategic model, here the number of vehicles for each CMC is found by
re-optimizing a more detailed representation of the vehicle and trip costs.

2.3 Operational problem: A cash management problem under
uncertainty (CMPU)

At the operational level, we solve a cash management problem at each branch
where cash transactions are uncertain. In CMPU, the cash positions of the
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branches are continuously reviewed and at any period one has to decide if any
action of cash transfer to or from the branch should take place and if so, what
should be the transfer amounts. In general, each of these actions incur fixed and
variable costs, which are defined in our context as:

K1 : Fixed cost of transferring money from a branch to a vehicle,
K2 : Fixed cost of transferring money from a vehicle to a branch,
k1 : Unit variable cost of transferring money from a branch to a vehicle,
k2 : Unit variable cost of transferring money from a vehicle to a branch.
Hence, when the cash position of a branch changes from x to y, the transfer

cost can be written as:

A(x, y) =

K1 + k1(x− y), if y < x,
0 if y = x,
K2 + k2(y − x), if y > x.

Under a variety of conditions, several authors, such as Girgis (1968), Porteus
(1972), Porteus and Neave (1972), and Constantinides and Richard (1978), show
that a “two-sided” generalization of (s, S) policy from inventory management,
i.e., (u,U,D, d), is an optimal policy for the cash management problem. The four
parameters defining this policy suggest that if the cash position falls to or below
u, enough cash is obtained to raise the cash position up to U and if the cash
position rises to or above d, enough cash is removed from the branch to bring
the cash position down to D.

While the form of the optimal policy is known, it is rather challenging to
compute the optimal policy parameters. The problem, however, can be somewhat
simplified for our setting. First, it would not be a very strong assumption to take
the fixed costs of cash transfers between the branch and the vehicle as equal, i.e.,
K1 = K2, since in both cases, the vehicles take similar routes and similar actions
are taken at the time of transfer such as counting money, approvals, and so on.
Second, the variable portion of the cash transfer can be assumed negligible as
compared to the fixed costs, i.e., k1 = k2 = 0, because much of the personnel
cost is already sunk in our setting. Under these conditions, Milbourne (1983)
has shown that a (u, z, d) policy would be optimal. This policy is a special case
of the two-sided policy described above, with z = U = D.

Despite these simplifications, however, computation of policy parameters
remains a challenge under general net transaction distributions. Furthermore,
while it is relatively easy to estimate the cost of holding excess cash (such as
the overnight interest rate), estimating the cost of cash shortage is not straight-
forward. Shortage cost includes the cost of borrowing at the interbank interest
rate, but sometimes it might not be feasible or desirable to borrow from another
institution. Moreover, one also needs to account for the cost of lost goodwill.
Therefore, rather than finding all three policy parameters with an estimated
cost of shortage, we assume that the management sets a “service-level” that
restricts the probability of cash shortage when a cash transfer to the branch
is awaited. This service level helps us to set the lower threshold u independent
of other parameters and then compute the remaining two parameters, z and d.
Our treatment is analogous to approximating (s, S) policy parameters with an
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Economic Order Quantity - ReOrder Point (EOQ-ROP) approach in inventory
management.

The model we have chosen towards this end is that of Miller and Orr (1966).
Their results are based on two key assumptions: cash transfers are immediate
and cash movements at a branch have zero mean, i.e., deposits and withdrawals
cancel each other, on average. Under these conditions Miller and Orr has calcu-
lated the optimal decisions as

z∗ =

√
3Kntµ2

t

4r
and d∗ = 3z∗,

where
µt : Mean cash transaction size,
K : Fixed cost of transferring money to or from a branch,
nt : Mean number of cash transactions on a day, and
r : Daily interest rate.

While in our case most branches have nonzero net transaction average, we
nonetheless use Miller and Orr’s model as an approximation. We find the (z∗, d∗)
as described above and then add u∗ to these values to obtain the triple policy
parameters (u∗, z∗ + u∗, d∗ + u∗), where u∗ is computed by using the service
level and the next transaction distribution. After calculation of these parameters
we find the average cash levels and the average number of transactions via a
simulation.

2.4 Integrating problem: The vehicle number determination
problem (VNDP)

The last problem acts as an integrating problem among UFLP, VRP, and CMPU
and it resulted from the practice of the bank from which this study derives. While
both UFLP and VRP take the number of vehicles into account, their treatments
are based on simplifying assumptions: UFLP determines the minimum number
of vehicles based on “adjusted” direct distance and VRP, on the other hand
assumes that each branch will be visited every day. VNDP offers a correction via
a probabilistic analysis of branches’ transfer requests. It uses VRP and CMPU
results from the previous iteration while modifying the parameters to be used in
UFLP and VRP in the next iteration.

Now suppose that VRP produces ki routes for CMC i. Let there be nik

branches represented by the set Jik = {1, 2, . . . , nik} on each route k ∈ Ki =
{1, 2, . . . , ki}. Also, let pikj denote the probability that a branch j ∈ Jik requests a
cash transfer on a given day. These probabilities are assumed to be independent
across branches. The probability that at least one branch on route k ∈ Ki

requests a transfer can be expressed as:

Pik = 1−
∏

j∈Jik

(1− pikj ),
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VRP VNDP

UFLP

UFLP

VRP VNDP

CMPU

CMPUt

t  − 1

Fig. 1. The structure of the iterative algorithm.

where probabilities (pikj ) are calculated via simulation of the CMPU. Then, the
probability distribution of the number of routes used on a day would be a multi-
nomial distribution for each CMC i with probabilities, Pi1, Pi2, . . . , Piki . Hence,
for CMC i, the probability that all routes need to be served on a particular day
is given as qiki =

∏ki

k=1 Pik. Similarly, the probability that (ki − 1) routes to

be used is given as qi(ki−1) =
∑ki

k′=1(1 − Pik′)
∏

k ̸=k′ Pik, and so on. The ex-
pected number of vehicles is then found by enumerating all probabilities qik for
1, 2, . . . , ki routes and then taking the expectation, i.e.

NoV [VNDP] =

ki∑
k=0

kqik. (14)

This calculation is based on the fact that whether a single branch or all the
branches in a route requests a service, one vehicle is used. Also, note that this
particular setup is based on the practice of the bank where routes are determined
and fixed before any daily operations take place (more on this later). Total
distance however, would depend on how many branches (an which branches) are
visisted on a particular day. This is taken into account in finding the expected
total distance, which is given as:

Dist[VNDP] =
m∑
i=1

PikUik, (15)

where Uik be the distance of the kth route of CMC i. This quantity is used to
revise the distance correction factor used in UFLP as well as to compute the
total transportation cost.

In our solution method, these four problems are solved iteratively with some
parameters updated at each iteration. Figures 1 and 2 depict the structure of
the algorithm at different levels of detail. In nutshell, UFLP uses CMPU results
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Vehicle Number Determination Problem

Uncapacitated Facility Location Problem

Cash Management Problem under Uncertainty

t−1(VNDP     )Dist t−1(VNDP     )NoV

Uncapacitated Facility Location Problem

Vehicle Number Determination Problem

t−1(VNDP     )Dist t−1(VNDP     )Dist

Vehicle Routing Problem

t−1(VRP     )Dist

t−1(VNDP     )Dist
t−1(VRP     )Dist

Vehicle Number Determination Problem

Cash Management Problem under Uncertainty

Number of 

each branch
transfers by

Number of 

each branch
transfers by

Vehicle Routing Problem

CMC locations
CMC−branch assignments

Distance covered by each vehicle
Number of vehicles at each CMC

CMC locations
CMC−branch assignments

Cash Management Problem under Uncertainty

Uncapacitated Facility Location Problem

Unit cash management service cost

Direct distance Direct time

Route distance

Distance factor Time factor

Vehicle Routing Problem

Route time

t−1(VNDP     )Dist
t−1(UFLP     )Dist

t−1(UFLP     )Dist

t−1α

t−1α

t−1β

t−1β

t−1(VNDP     )Dist
t−1(VNDP     )NoV

t−1

t−1

Average service time at CMCs

Main routes at each CMC

Main routes at each CMC

=

Optimal (U, z, D) policies at each branch

(a) (b)

(d)(c)

= =k

k

Fig. 2. The components of the iterative algorithm: (a) Uncapacitated Facility Location
Problem, (b) Vehicle Routing Problem, (c) Vehicle Number Determination Problem,
and (d) Cash Management Problem under Uncertainty.

to determine the expected cash transfer requests at each branch, while using the
VNDP’s results to adjust the transportation cost and time parameters. VRP uses
UFLP results on the CMC locations and CMC-branch assignments and VNDP’s
results to adjust the distance parameter. VNDP uses VRP results to obtain the
routes and CMPU’s results to obtain the number of transfers, which are used to
calculate the branches’ transfer request probabilities. Finally, CMPU uses the
results of UFLP and VRP to find the transfer request fixed costs at each branch
and hence the policy parameters, which in turn determine the service request
frequencies on of the branches.

3 A Numerical Study

The main purpose of this study is to investigate the convergence properties of
our approach. We are also interested in how much an iterative approach would
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likely to improve the system over a piece-meal approach, i.e., solving strategic,
tactical, and operational problems only once without any feedback mechanism. In
our implementation, both UFLP and VRP are modeled using GAMS and solved
using the commercial optimizer LINDO. Other computational steps including
the simulation are performed in MS Excel.

Our instances are partially based on data obtained from a bank that operates
in Turkey. It is the largest private bank in Turkey with its 1,300 branches.
However, for illustrative purposes, we only considered a region where the bank
had 86 branches. We would like to point out that our approach would work for
much larger instances as well because in the VRP, the most computationally
demanding part of our approach, the problem sizes tend to be stable due to the
constraint on working hours in a day.

We obtained the addresses of each of the 86 branches from the bank and
then generated the distance matrices in both time and length using Google
Maps, which uses the actual road network. Whenever the travel time from a
CMC candidate location to a branch and back exceeds the nine-hour work day,
we eliminated the assignment variables, so the branch would not assigned to the
CMC.

Table 1 summarizes all the cost estimations in the local currency Turkish Lira
and US Dollars at the exchange rate at that time. A portion of fixed cost of CMCs
is the leasing cost, which we have estimated using real-estate pages. We came up
with an average figure that is used at all locations. For other components of fixed
costs such as cleaning, heating, lighting, etc. we just added a fixed percentage of
the leasing cost. The second cost is that of the AVs. According to the information
provided by the bank, AVs are regular commercial vehicles that are modified for
certain security requirements. AVs can be operational for an average of 10 years.
The straight-line depreciation of the price of an AV and an verage maintenance
cost is used as the AV annual cost. The variable AV cost is essentially the mileage
cost due to gas.

Above estimates do not include labor cost. Under the current operations all
labor costs are fixed. There are four types of personnel employed in the cash
transfer system: drivers, security guards, clerks, and supervisors. To calculate
the cost of these personnel we used the minimum wage as a basis. First we have
estimated how much a minimum wage personnel cost to a company including
health and pension benefits, vacation pay, and so on. Roughly, drivers and se-
curity guards cost twice as much as a minimum wage personnel. The clerks and
supervisors cost three and four times that amount, respectively.

In the current operations, each AV is assigned four personnel; one of each.
This number might seem excessive, but in the current mode of operation, drivers
are required to be in the vehicle at all times and not to perform any other
task. According to Turkish regulations, security personnel is also barred from
performing any other function. A clerk is needed to perform all the transactions
and exchanges and a supervisor is to oversee all the operations. A CMC is
typically staffed with three personnel; also one of each, except a driver. These
personnel costs are added to costs of CMCs and AVs to obtain the fixed costs.
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Cost type TL USD

CMC annual cost 77,581 43,100
AV annual cost 5,104 2,835
AV variable cost (per km) 0.68 0.38
Minimum wage 11,088 6,160
Driver or guard cost 22,176 12,320
Clerk cost 33,264 18,480
Supervisor cost 44,352 26,640
Total CMC annual fixed cost 177,373 98,540
Total AV annual fixed cost 127,071 90,595

Table 1. Cost estimations

We now turn to the estimation of the cash transaction parameters at the
branches, which include the nature of cash movements at each branch, fixed cost
of cash transfers, and the daily interest rate. The last one is perhaps the easiest
one to estimate (we have simply divided the interbank borrowing rate, which
was 8% at the time, by 365 days). We are also aware that this is particularly
high; in most developed economies this rate is extremely low.

While in most cash management literature fixed cost is usually readily avail-
able (as transferring money from one investment option to another entails some
fees) in our case, it includes the fixed effort of transferring the cash from a vehicle
to a branch (or, vice versa) as well as the transportation cost portion that can
be allocated to the branch. For the first portion, we have estimated the average
times the branch and vehicle personnel spend in the money exchange and multi-
ply it with hourly wage rates to estimate a fixed labor cost. The transportation
cost portion is rather more crude; we have identified the total route transporta-
tion cost and divided it among the branches based on a weight computed from
the direct distances to CMC. Hence, farther branches received a larger share of
the transportation cost while closer branches received a smaller share.

We now move on with the description of demand parameters. We need to
introduce some notation to facilitate the exposition. Let,

µw, σ
2
µw : Mean and variance of the size of withdrawals,

nw, σ
2
nw : Mean and variance of the number of daily withdrawals,

µd, σ
2
µd : Mean and variance of the size of deposits,

nd, σ
2
nd : Mean and variance of the number of daily deposits,

The number of transactions at a branch is then nt = nw+nd and the weighted
average cash movement size is µt = (nwµw+ndµd)/nt. Although Miller and Orr
(1966) model assume roughly equal sized withdrawals and deposits, in our cases
we have observed that on average there are roughly three to four times more
withdrawals than deposits, while the average deposit size is roughly three to
four times that of withdrawals.

To compute the lower threshold u∗ of the triple policy we need to estimate
the lead-time and lead-time cash withdrawal (or deposit) demand. The mean
of daily cash demand is simply µ = nwµw − ndµd and its variance is σ2 =
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nwσ
2
µw + µ2

wσ
2
nw + ndσ

2
µd + µ2

dσ
2
nd. In our numerical experiments, we have also

observed that normal distribution is a fairly good approximation for the net daily
transactions, although the actual distribution have fatter tails. Finally we have
set the lead time as the one fourth of the route travel time between a branch and
its CMC and assumed that it is same for all branches at a route. The rationale
is that the most a particular branch is away from the CMC is about half the
route and we used the half of that time (the average) as the approximation of
the lead-time. Finally, we set the risk of running out of cash during cash transfer
lead-time as 1% (i.e., 99% service level).

We have tested our approach on 12 problem instances, each of which has
the same parameters except the demand parameters. The instances are only
differentiated with respect to the cash demand parameters. To estimate the
means and variances of the sizes and numbers of deposits and withdrawals,
we used monthly data for a 12-month period, each month corresponding to an
instance. We refer to these instances as “January”, “February”, etc.

To initialize the procedure, we start with solving a CMPU for each branch
assuming that each branch is also a CMC. In this case the fixed cost of trans-
ferring money consists only of the labor portion. We expected branches put
a substantially high number of transfer requests since the cost of doing so is
rather low at the beginning. Based on those results we generate average transfer
requests at each branch and start “Iteration 1” by solving a UFLP considering
only the CMC costs and the direct transportation cost. Subsequently, we solve
VRPs and VNDPs for each CMC and then CMPU at each branch to end the
first iteration. We then move to the second iteration and continue until all three
iteration parameters (α, β, and kj) converge.

Tables 2 and 3 report our results at varying in details. We choose to give
only the January’s results in detail (Table 2) as other instances were similar.
As expected, there are substantially high number of cash transfer requests and
low cash levels at the initialization stage (Iteration 0). However, the solution
quickly moves to a converging pattern and by the fourth iteration it converges
to a solution. One of the decisions, the number of vehicles, shows a noteworthy
pattern. This decision is found in UFLP, VRP, and VNDP. Although UFLP is
not able to capture the impact of this variable sufficiently, it does not present
an obstacle for the convergence of the algorithm. We also observed that the
impact of VNDP on revising the number of vehicles is basically negligible (refer
to Equation (14)). However its impact on the distance correction is important
(see Equation (15)).

In Table 3 we only reported those of the summary results (marked with “*” in
Table 2). The results are somewhat similar to those of January instance. Eight
of the other instances took four iterations; one took five, and two took three
iterations. Each instance’s iterative pattern is also similar where the problems
quickly converge to a lower number of CMC locations and AVs and mostly
settle there. From this table we also observe that the iterative solution approach
improves greatly upon a piece-meal approach. For example, in January, the total
cost at the end of Iteration 1 (would be the result of a piece-meal approach)
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Problem Iteration (t) 0 1 2 3 4
UFLP Number of CMCs* 86 14 10 10 10
UFLP Number of vehicles 11.8 6.9 8.3 10.0
UFLP Total distance 1,622,953 1,141,654 942,083 942,083
VRP Number of vehicles 18 17 17 17
VRP Total route length 3,803 4,190 4,190 4,190
VRP Total distance 959,679 1,057,302 1,057,302 1,057,302
VNDP Number of vehicles* 18 17 17 17
VNDP Total distance* 957,457 947,365 946,300 946,300
CMPU Total number of requests 28,428 17,724 16,704 16,704 16,704
CMPU Total average cash level* 9,618,084 24,898,274 27,535,662 27,535,662 27,535,662

Iteration parameters

UFLP Distance correction (αt) 0.67 0.59 0.83 1.00 1.00
VRP Distance correction (βt) 0.67 1.00 0.90 0.90 0.90

Costs
UFLP CMC fixed costs 15,262,196 2,484,544 1,774,674 1,774,674 1,774,674
VNDP AV fixed costs 2,655,043 2,507,541 2,507,541 2,507,541
VNDP Travel cost 652,961 646,079 645,353 645,353
CMPU Cash holding cost 769,447 1,991,862 2,202,853 2,202,853 2,202,853

Total cost* 16,031,643 7,784,410 7,131,147 7,130,421 7,130,421

Table 2. Detailed results of the January instance.

is 7,784,410. It is reduced to 7,130,421 as a result of the iterative approach,
which corresponds to about 8.4% improvement. The average improvement over
12 instances is 7.8%, which indicates that a substantial improvement in total
cost can be obtained by an iterative approach.

In summary, both the convergence and the improvement results indicate that
an iterative approach such as ours presents a great promise as a viable solution
approach in the improvement of such design and operational decisions. One final
noteworthy result is that most of the improvement in these instances came at
the end of Iteration 2, while the algorithm uses the remaining steps to ensure
convergence of the algorithm. Knowing that such great improvements can be
obtained in a few iterations is a further credit to an iterative approach.

4 Concluding remarks

This paper presents a novel addition to the scant but growing literature of cash
logistics operations. The overall problem is potentially very difficult to solve and
even to model in an integrated fashion. Therefore, an iterative approach such as
ours that solves a series of location, routing, and cash inventory problems is an
attractive one.

Our approach and the model are open to several improvements and exten-
sions. Some of our modeling choices came from the particular practices we ob-
served at the bank, which might not be valid or desirable in other cases. Firstly,
the cash management problem that we model here is based on a number of as-
sumptions that might not hold in other banking environments. For example, in
general, some branches have net withdrawals while the others have net deposits.
Hence, the cash management policy parameters must be found by observing these
differences among the branches and the corresponding vehicle routing problem
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could also be revised to take advantage of such differences among the branches.
Secondly, the vehicle routing part can also be made more dynamic. However,
that would necessitate a different and potentially a much more difficult version
of the vehicle routing problem. Thirdly, an integrated approach could also be
developed albeit possibly with more simplifying assumptions. Finally, a real-time
control and decision support system can be developed for some of the tactical
and operational decisions.
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Instance Iteration (t) 0 1 2 3 4 5

Jan Number of CMCs 86 14 10 10 10
Number of vehicles 18 17 17 17
Total distance 957,457 947,365 946,300 946,300
Total average cash level 9,618,084 24,898,274 27,535,662 27,535,662 27,535,662
Total cost 16,031,643 7,784,410 7,131,147 7,130,421 7,130,421

Feb Number of CMCs 86 13 10 10 10
Number of vehicles 18 17 17 17
Total distance 966,150 902,489 904,540 904,540
Total average cash level 7,954,135 22,532,743 24,567,775 24,567,775 24,567,775
Total cost 15,898,527 7,423,629 6,863,111 6,864,511 6,864,511

Mar Number of CMCs 86 14 10 10 10 10
Number of vehicles 20 17 17 17 17
Total distance 994,626 1,005,494 997,635 1,001,523 1,001,523
Total average cash level 11,903,928 28,726,610 33,080,877 33,080,877 33,080,877 33,080,877
Total cost 16,214,510 8,411,030 7,614,407 7,609,047 7,611,699 7,611,699

Apr Number of CMCs 86 14 9 9 9
Number of vehicles 19 19 19 19
Total distance 960,376 977,459 972,778 972,778
Total average cash level 8,340,658 23,916,725 27,049,245 27,049,245 27,049,245
Total cost 15,929,449 7,855,380 7,230,294 7,227,102 7,227,102

May Number of CMCs 86 14 11 11 11
Number of vehicles 19 18 18 18
Total distance 977,670 856,824 854,915 854,915
Total average cash level 9,548,230 25,731,865 30,164,435 30,164,435 30,164,435
Total cost 16,026,055 8,012,385 7,604,672 7,603,370 7,603,370

Jun Number of CMCs 86 14 11 11
Number of vehicles 19 19 19
Total distance 973,696 928,029 928,029
Total average cash level 9,548,230 24,757,850 27,745,785 27,745,785
Total cost 16,026,055 7,931,754 7,607,242 7,607,242

Jul Number of CMCs 86 14 10 10
Number of vehicles 19 17 17
Total distance 977,670 955,171 955,171
Total average cash level 8,828,137 24,122,858 27,498,010 27,498,010
Total cost 15,968,447 7,883,664 7,133,459 7,133,459

Aug Number of CMCs 86 13 10 10 10
Number of vehicles 19 17 16 16
Total distance 971,967 1,021,075 1,020,822 1,020,822
Total average cash level 9,691,987 27,062,211 30,421,063 30,421,063 30,421,063
Total cost 16,037,555 7,937,456 7,412,247 7,264,573 7,264,573

Sep Number of CMCs 86 15 12 12 12
Number of vehicles 19 18 18 18
Total distance 960,033 902,765 901,199 901,199
Total average cash level 9,008,141 26,093,475 28,959,204 28,959,204 28,959,204
Total cost 15,982,847 8,206,753 7,717,051 7,715,984 7,715,984

Oct Number of CMCs 86 14 10 10 10
Number of vehicles 19 17 17 17
Total distance 977,645 958,301 957,318 957,318
Total average cash level 8,673,301 28,051,644 32,771,237 32,771,237 32,771,237
Total cost 15,956,060 8,197,950 7,557,451 7,556,781 7,556,781

Nov Number of CMCs 86 14 10 10 10
Number of vehicles 19 17 16 16
Total distance 967,954 919,875 923,733 923,733
Total average cash level 8,996,093 25,429,554 29,259,249 29,165,969 29,165,969
Total cost 15,981,884 7,981,574 7,250,286 7,097,953 7,097,953

Dec Number of CMCs 86 14 10 10 10
Number of vehicles 19 17 17 17
Total distance 977,670 996,579 995,629 995,629
Total average cash level 9,560,877 27,679,537 31,601,283 31,601,283 31,601,283
Total cost 16,027,066 8,168,198 7,489,960 7,489,312 7,489,312

Table 3. Summary results on 12 instances.


