16 research outputs found

    Management of vaginal discharge

    Get PDF
    No Abstract

    Hospital and community isolates of uropathogens at a tertiary hospital in South Africa

    Get PDF
    Aim. To investigate the profile of common uropathogensisolated from urine specimens submitted to the diagnostic microbiology laboratory at a tertiary teaching hospital and assess their antimicrobial susceptibility patterns to commonly used antimicrobial agents.Methods. We conducted a retrospective analysis of laboratoryreports for all urine specimens submitted for investigations over a 1-year period. Isolates were tested by means of the Kirby-Bauer disc diffusion method for susceptibility to amoxicillin, ciprofloxacin, gentamicin, co-trimoxazole and nitrofurantoin, and for extended-spectrum beta-lactamase (ESBL) production.Results. Out of the total specimens (N=2 203) received over the 1-year study period, 51.1% (1 126) of the urine samples were culture-positive, the majority (65.4%) having come from females. The most common isolate was Escherichia coli (39.0%) followed by Klebsiella species (20.8%) and Enterococcus faecalis (8.2%). The  ram-negative isolates displayed a very high level of resistance to amoxicillin (range 43 - 100%) and co-trimoxazole (range 29 - 90%), whereas resistance to gentamicin (range 0 - 50%) and ciprofloxacin (range 0 - 33%)was lower. E. coli isolates were susceptible to nitrofurantoin (94%), and ESBL production was significantly higher (p=0.01) in the hospital isolates, compared with those from the community referral sites.Conclusions. The culture-positive rate for uropathogens washigh, with a greater incidence among females. E. coli was the most common aetiological agent identified, and remained susceptible to nitrofurantoin. Resistance levels to amoxicillin and co-trimoxazole were very high for all Gram-negative isolates, and it is recommended that these antibiotics should not be used for the empiric treatment of urinary tract infections

    Gene encoding virulence markers among Escherichia coli isolates from diarrhoeic stool samples and river sources in rural Venda communities of South Africa

    Get PDF
    River water sources and diarrhoeic stools of residents in the Venda Region, Limpopo Province of South Africa were analysed for the prevalence of Escherichia coli (E. coli) and the presence of virulence genes among the isolates. A control group of 100 nondiarrhoeic stool samples was included. Escherichia coli was isolated and identified by standard cultural and biochemical methods. Pathogenicity of environmental and human isolates was determined by amplification of genes associated with virulence of E. coli, using specific primers. Of a total of 228 water and river sediment samples screened, E. coli was recovered from 200 (87.7%), and 135 (67.5%) of these had one or more genes associated with pathogenicity. The highest frequency of isolation of pathogenic strains was found in Ritavi River water and sediment (80.6%), followed by Lotanyanda River (76.9%), and the least (45.8%) in Nzhelele River 2. Escherichia coli was recovered from all of the 252 diarrhoeic stools tested (100%), and 119 (47.28%) of these had one or more genes associated with pathogenicity. The frequency of isolation of potential pathogenic E. coli from humans was highly significant (t = 6.3; pdย•0.01) in comparison to water isolates. Cytotoxic necrotizing Factor 1 (cnf1) and cytotoxic necrotising Factor 2 (cnf2) coding for necrotoxigenic E. coli (NEC); bundle-forming pilus (bfpA) and enteropathogenic attachment and effacement (eaeA) coding for enteropathogenic E. coli (EPEC), occurred in 35% and 34% respectively of river isolates. Heat-stable (ST) and heat-labile (LT) toxin genes coding for enterotoxigenic (ETEC) and Shiga-like toxin 1 (Stx1) and Shiga-like toxin 2 (Stx2) coding for Shiga-like toxin-producing E. coli (STEC) were not encountered in the river isolates. Isolates from stool samples had 21.8% and 12.6% of EPEC and NEC strains respectively; while enterotoxigenic (ETEC), Shiga-like toxin-producing (STEC) and enteroaggregative E. coli (EAEC) had a prevalence of 5%, 5.8% and 5.8% respectively. One human isolate possessed stx2 and eaeA indicating E. coliO157: H7. No genes associated with pathogenicity were observed in human non-diarrhoeic stool isolates. Results have revealed a possibility of a recycling of pathogenic E. coli strains, particularly the EPEC and NEC strains, between the water sources and the local population. Water SA Vol.30(1): 37-4
    corecore