22 research outputs found

    Hypothyroidism Enhances Tumor Invasiveness and Metastasis Development

    Get PDF
    11 pages, 9 figures.[Background]: Whereas there is increasing evidence that loss of expression and/or function of the thyroid hormone receptors (TRs) could result in a selective advantage for tumor development, the relationship between thyroid hormone levels and human cancer is a controversial issue. It has been reported that hypothyroidism might be a possible risk factor for liver and breast cancer in humans, but a lower incidence of breast carcinoma has been also reported in hypothyroid patients [Methodology/Principal Findings]: In this work we have analyzed the influence of hypothyroidism on tumor progression and metastasis development using xenografts of parental and TRβ1–expressing human hepatocarcinoma (SK-hep1) and breast cancer cells (MDA-MB-468). In agreement with our previous observations tumor invasiveness and metastasis formation was strongly repressed when TRβ–expressing cells were injected into euthyroid nude mice. Whereas tumor growth was retarded when cells were inoculated into hypothyroid hosts, tumors had a more mesenchymal phenotype, were more invasive and metastatic growth was enhanced. Increased aggressiveness and tumor growth retardation was also observed with parental cells that do not express TRs. [Conclusions/Significance]: These results show that changes in the stromal cells secondary to host hypothyroidism can modulate tumor progression and metastatic growth independently of the presence of TRs on the tumor cells. On the other hand, the finding that hypothyroidism can affect differentially tumor growth and invasiveness can contribute to the explanation of the confounding reports on the influence of thyroidal status in human cancer.This work was supported by grants BFU2007-62402 from MEC; RD06/0020/0036 from FIS and from the EU Project CRESCENDO (FP6-018652.Peer reviewe

    Development of a dso-market on flexibility services

    Get PDF
    BACKGROUND: Several of the currently used anticancer drugs may variably affect thyroid function, with impairment ranging from modified total but not free concentration of thyroid hormones to overt thyroid disease. SUMMARY: Cytotoxic agents seem to alter thyroid function in a relatively small proportion of adult patients. Anticancer hormone drugs may mainly alter serum levels of thyroid hormone-binding proteins without clinically relevant thyroid dysfunction. Old immunomodulating drugs, such as interferon-Îą and interleukin-2, are known to induce variably high incidence of autoimmune thyroid dysfunction. Newer immune checkpoint inhibitors, such as anti-CTLA4 monoclonal antibodies, are responsible for a relatively low incidence of thyroiditis and may induce secondary hypothyroidism resulting from hypophysitis. Central hypothyroidism is a well-recognized side effect of bexarotene. Despite their inherent selectivity, tyrosine kinase inhibitors may cause high rates of thyroid dysfunction. Notably, thyroid toxicity seems to be restricted to tyrosine kinase inhibitors targeting key kinase-receptors in angiogenic pathways, but not other kinase-receptors (e.g., epidermal growth factor receptors family or c-KIT). In addition, a number of these agents may also increase the levothyroxine requirement in thyroidectomized patients. CONCLUSIONS: The pathophysiology of thyroid toxicity induced by many anticancer agents is not fully clarified and for others it remains speculative. Thyroid dysfunction induced by anticancer agents is generally manageable and dose reduction or discontinuation of these agents is not required. The prognostic relevance of thyroid autoimmunity, overt and subclinical hypothyroidism induced by anticancer drugs, the value of thyroid hormone replacement in individuals with abnormal thyrotropin following anticancer systemic therapy, and the correct timing of replacement therapy in cancer patients need to be defined more accurately in well-powered prospective clinical trials
    corecore