165 research outputs found
A Noncoding Point Mutation of Zeb1 Causes Multiple Developmental Malformations and Obesity in Twirler Mice
Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance
Clinical significance of proliferative potential of occult metastatic cells in bone marrow of patients with breast cancer
Electron Tomography Reveals the Steps in Filovirus Budding
The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a “submarine-like” budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular “rocket-like” protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses
In Silico Whole Genome Association Scan for Murine Prepulse Inhibition
Background
The complex trait of prepulse inhibition (PPI) is a sensory gating measure related to schizophrenia and can be measured in mice. Large-scale public repositories of inbred mouse strain genotypes and phenotypes such as PPI can be used to detect Quantitative Trait Loci (QTLs) in silico. However, the method has been criticized for issues including insufficient number of strains, not controlling for false discoveries, the complex haplotype structure of inbred mice, and failing to account for genotypic and phenotypic subgroups. Methodology/Principal Findings
We have implemented a method that addresses these issues by incorporating phylogenetic analyses, multilevel regression with mixed effects, and false discovery rate (FDR) control. A genome-wide scan for PPI was conducted using over 17,000 single nucleotide polymorphisms (SNPs) in 37 strains phenotyped. Eighty-nine SNPs were significant at a false discovery rate (FDR) of 5%. After accounting for long-range linkage disequilibrium, we found 3 independent QTLs located on murine chromosomes 1 and 13. One of the PPI positives corresponds to a region of human chromosome 6p which includes DTNBP1, a gene implicated in schizophrenia. Another region includes the gene Tsn which alters PPI when knocked out. These genes also appear to have correlated expression with PPI. Conclusions/Significance
These results support the usefulness of using an improved in silico mapping method to identify QTLs for complex traits such as PPI which can be then be used for to help identify loci influencing schizophrenia in humans
Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats
Dopamine related disorders usually respond to dopaminergic drugs, but not all symptoms are equally responsive. In Parkinson’s disease (PD) in particular, axial symptoms resulting in impaired gait and postural control are difficult to treat. Stochastic vestibular stimulation (SVS) has been put forward as a method to improve CNS function in dopamine related disorders, but the mechanisms of action are not well understood.
This thesis aimed to investigate the effects of SVS on neuronal brain activity and to evaluate the possible enhancing effect of SVS on motor control in PD and on cognitive functions and motor learning in Attention deficit hyperactivity disorder (ADHD).
Behavioural tests were conducted in the 6-OHDA rat model of PD using the accelerating Rotarod and the Montoya skilled reach test to evaluate the effect of SVS on motor control. The effect of SVS on brain activity was assessed using in vivo microdialysis and immunohistochemistry. We evaluated the effect of SVS on postural control and Parkinsonism in patients with PD and the effect of SVS on cognitive function in people with ADHD.
The behavioural animal studies indicate that SVS may have an enhancing effect on locomotion, but not skilled forepaw function. SVS increased GABA transmission in the ipsilesional substantia nigra (SN) and may have a rebalancing effect on dysfunctional brain activity. SVS increased c-Fos activity more than levodopa and saline in the vestibular nucleus of all animals. c-Fos expression was also higher in this region in the 6-OHDA lesioned than in shamlesioned animals, supporting the theory that SVS may have larger effects in the dopamine depleted brain. SVS increased c-Fos expression in the habenula nucleus substantially more than levodopa did. Furthermore, SVS and levodopa had similar effects on many brain regions, including the striatum, where saline had no effect. The clinical studies revealed improvement of postural control in PD during SVS. There was a trend towards reduced Parkinsonism during SVS when off levodopa. No substantial effects were found on cognitive performance in ADHD.
In PD, SVS may improve motor control by inhibiting the overactive SN, possibly through a non-dopaminergic modulatory pathway involving increased neurotransmission in the habenula nucleus. SVS could be trialled in larger studies to evaluate long-term effects on treatment resistant axial symptoms associated with PD
A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil
Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells
- …
