33 research outputs found

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Wigner defects bridge the graphite gap.

    No full text
    We present findings on the structure, energies and behaviour of defects in irradiated graphitic carbon materials. Defect production due to high-energy nuclear radiations experienced in graphite moderators is generally associated with undesirable changes in internal energy, microstructure and physical properties--the so-called Wigner effect. On the flip side, the controlled introduction and ability to handle such defects in the electron beam is considered a desirable way to engineer the properties of carbon nanostructures. In both cases, the atomic-level details of structure and interaction are only just beginning to be understood. Here, using a model system of crystalline graphite, we show from first-principles calculations, new details in the behaviour of vacancy and interstitial defects. We identify a prominent barrier-state to energy release, reveal a surprising ability of vacancy defects to bridge the widely spaced atomic layers, and discuss physical property and microstructure changes during irradiation, including interactions with dislocations

    Structural and thermodynamic properties of water related defects in α-quartz

    No full text
    We have investigated the atomic geometries and thermodynamic properties of water related defects in α-quartz using first-principles calculation. We confirm that the (OH)4 group is thermodynamically most stable and aggregates to form platelets in the form of microcracks with hydrolysed surfaces. We also examine other forms of defects which can be accessible out of equilibrium at high temperature. Finally, we discuss the consequences of our results for the hydrolytic weakening of α-quartz. © Springer-Verlag 2005

    Partial dislocations under forward bias in SiC

    No full text
    First-principles calculations are used to investigate the partial dislocations in 4H-SiC. We have shown that the Peierls barriers are strongly dependent on the dislocation core structures. Our results have revealed that the asymmetric reconstruction does not possess midgap states while the symmetric reconstructions, characterized by dangling bond on like atoms along the dislocation line, are always electrically active. We suggested that under forward bias, the free energies of the symmetric reconstructions are dynamically lowered by continuous electron-hole transitions between the respective deep levels and valence/conduction bands

    First-principles simulations of boron diffusion in graphite.

    No full text
    Boron strongly modifies electronic and diffusion properties of graphite. We report the first ab initio study of boron interaction with the point defects in graphite, which includes structures, thermodynamics, and diffusion. A number of possible diffusion mechanisms of boron in graphite are suggested. We conclude that boron diffuses in graphite by a kick-out mechanism. This mechanism explains the common activation energy, but large magnitude difference, for the rate of boron diffusion parallel and perpendicular to the basal plane

    Metastable Frenkel pair defect in graphite: source of Wigner energy?

    No full text
    The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9 eV more stable than its isolated constituents, still has a formation energy of 10.8 eV. The barrier to recombination to perfect graphite is calculated to be 1.3 eV, consistent with the experimental first Wigner energy release peak at 1.38 eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation

    Structure and energetics of the vacancy in graphite

    No full text
    We determine properties of the vacancy in graphite from first principles calculations. The ground-state structure is associated with a formation energy of 7.4 eV and arises through a combination of symmetric relaxation and symmetry-breaking Jahn-Teller distortion to one of three degenerate, symmetry-related structures. The distortion results in a weak reconstructed bond and small out-of-plane atomic displacements. Dynamic switching between degenerate structures is activated by a barrier of 0.1 eV and we interpret scanning tunneling microscopy observations on the basis of thermal averaging between structures. The calculated migration energy of 1.7 eV is lower than that widely accepted from experiment, and we propose that the discrepancy is explained by a revised picture of trapping during vacancy transport, dependent on concentration. We discuss the significance of these findings in understanding defect behavior in irradiated graphite and related graphitic materials, in particular single-walled nanotubes

    Structure and energetics of the vacancy in graphite

    No full text
    corecore