1,412 research outputs found

    Hybrid MM/SVM structural sensors for stochastic sequential data

    Get PDF
    In this paper we present preliminary results stemming from a novel application of Markov Models and Support Vector Machines to splice site classification of Intron-Exon and Exon-Intron (5' and 3') splice sites. We present the use of Markov based statistical methods, in a log likelihood discriminator framework, to create a non-summed, fixed-length, feature vector for SVM-based classification. We also explore the use of Shannon-entropy based analysis for automated identification of minimal-size models (where smaller models have known information loss according to the specified Shannon entropy representation). We evaluate a variety of kernels and kernel parameters in the classification effort. We present results of the algorithms for splice-site datasets consisting of sequences from a variety of species for comparison

    Real-world practice level data analysis confirms link between variability within Blood Glucose Monitoring Strip (BGMS) and glycosylated haemoglobin (HbA1c) in Type 1 Diabetes.

    Get PDF
    AIMS/HYPOTHESIS: Our aim was to quantify the impact of Blood Glucose Monitoring Strips variability (BGMSV) at GP practice level on the variability of reported glycated haemoglobin (HbA1cV) levels. METHODS: Overall GP Practice BGMSV and HbA1cV were calculated from the quantity of main types of BGMS being prescribed combined with the published accuracy, as % results within ±% bands from reference value for the selected strip type. The regression coefficient between the BGMSV and HbA1cV was calculated. To allow for the aggregation of estimated three tests/day over 13 weeks (ie, 300 samples) of actual Blood Glucose (BG) values up to the HbA1c, we multiplied HbA1cV coefficient by √300 to estimate an empirical value for impact of BGMSV on BGV. RESULTS: Four thousand five hundred and twenty-four practice years with 159 700 T1DM patient years where accuracy data were available for more than 80% of strips prescribed were included, with overall BGMSV 6.5% and HbA1c mean of 66.9 mmol/mol (8.3%) with variability of 13 mmol/mol equal to 19% of the mean. At a GP practice level, BGMSV and HbA1cV as % of mean HbA1c (in other words, the spread of HbA1c) were closely related with a regression coefficient of 0.176, P ±4.5 mmol/L from target, compared with the best performing BGMS with BG >±2.2 mmol/L from reference on 1/20 occasions. CONCLUSION: Use of more variable/less accurate BGMS is associated both theoretically and in practice with a larger variability in measured BG and HbA1c, with implications for patient confidence in their day-to-day monitoring experience

    The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo

    Get PDF
    Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections

    Combining Deep Facial and Ambient Features for First Impression Estimation

    Get PDF
    14th European Conference on Computer Vision (ECCV) -- OCT 08-16, 2016 -- Amsterdam, NETHERLANDSFirst impressions influence the behavior of people towards a newly encountered person or a human-like agent. Apart from the physical characteristics of the encountered face, the emotional expressions displayed on it, as well as ambient information affect these impressions. In this work, we propose an approach to predict the first impressions people will have for a given video depicting a face within a context. We employ pre-trained Deep Convolutional Neural Networks to extract facial expressions, as well as ambient information. After video modeling, visual features that represent facial expression and scene are combined and fed to a Kernel Extreme Learning Machine regressor. The proposed system is evaluated on the ChaLearn Challenge Dataset on First Impression Recognition, where the classification target is the Big Five personality trait labels for each video. Our system achieved an accuracy of 90.94% on the sequestered test set, 0.36% points below the top system in the competition

    Phase I and pharmacokinetic study of irinotecan in combination with R115777, a farnesyl protein transferase inhibitor

    Get PDF
    The aims of this study were to determine the maximum-tolerated dose (MTD), toxicity profile, and pharmacokinetics of irinotecan given with oral R115777 (tipifarnib), a farnesyl protein transferase inhibitor. Patients were treated with escalating doses of irinotecan with interval-modulated dosing of R115777 (continuously or on days 1-14, and repeated every 21 days). In total, 35 patients were entered onto the trial for a median duration of treatment of 43 days (range, 5-224 days). Neutropenia and thrombocytopenia were the dose-limiting toxicities; other side effects were mostly mild. The MTD was established at R115777 300 mg b.i.d. for 14 consecutive days with irinotecan 350 mg m-2 given every 3 weeks starting on day 1. Three patients had a partial response and 14 had stable disease. In the continuous schedule, the area under the curves of irinotecan and its active metabolite SN-38 were 20.0% (P = 0.004) and 38.0% (P < 0.001) increased by R115777, respectively. Intermittent dosing of R115777 at a dose of 300 mg b.i.d. for 14 days every 3 weeks is the recommended dose of R115777 in combination with the recommended single-agent irinotecan dose of 350 mg m-2

    CDK targets Sae2 to control DNA-end resection and homologous recombination

    Get PDF
    DNA double-strand breaks (DSBs) are repaired by two principal mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR)1. HR is the most accurate DSB repair mechanism but is generally restricted to the S and G2 phases of the cell cycle, when DNA has been replicated and a sister chromatid is available as a repair template2-5. By contrast, NHEJ operates throughout the cell cycle but assumes most importance in G1 (refs 4​, ​6). The choice between repair pathways is governed by cyclin-dependent protein kinases (CDKs)2,3,5,7, with a major site of control being at the level of DSB resection, an event that is necessary for HR but not NHEJ, and which takes place most effectively in S and G2 (refs 2​, ​5). Here we establish that cell-cycle control of DSB resection in Saccharomyces cerevisiae results from the phosphorylation by CDK of an evolutionarily conserved motif in the Sae2 protein. We show that mutating Ser 267 of Sae2 to a non-phosphorylatable residue causes phenotypes comparable to those of a sae2Δ null mutant, including hypersensitivity to camptothecin, defective sporulation, reduced hairpin-induced recombination, severely impaired DNA-end processing and faulty assembly and disassembly of HR factors. Furthermore, a Sae2 mutation that mimics constitutive Ser 267 phosphorylation complements these phenotypes and overcomes the necessity of CDK activity for DSB resection. The Sae2 mutations also cause cell-cycle-stage specific hypersensitivity to DNA damage and affect the balance between HR and NHEJ. These findings therefore provide a mechanistic basis for cell-cycle control of DSB repair and highlight the importance of regulating DSB resection

    Continuous increase of cardiovascular diseases, diabetes, and non-HIV related cancers as causes of death in HIV-infected individuals in Brazil: An analysis of nationwide data

    Get PDF
    Introduction: After antiretroviral therapy (ART) became available, there was a decline in the number of deaths in persons infected with HIV. Thereafter, there was a decrease in the proportion of deaths attributed to opportunistic infections and an increase in the proportion of deaths attributed to chronic comorbidities. Herein we extend previous observations from a nationwide survey on temporal trends in causes of death in HIV-infected patients in Brazil. Methods: We describe temporal trends in causes of death among adults who had HIV/AIDS listed in the death certificate to those who did not. All death certificates issued in Brazil from 1999 to 2011 and listed in the national mortality database were included. Generalized linear mixed-effects logistic models were used to study temporal trends in proportions. Results: In the HIV-infected population, there was an annual adjusted average increase of 6.0%, 12.0%, 4.0% and 4.1% for cancer, external causes, cardiovascular diseases (CVD) and diabetes mellitus (DM), respectively, compared to 3.0%, 4.0%, 1.0% and 3.9%, in the non-HIV group. For tuberculosis (TB), there was an adjusted average increase of 0.3%/year and a decrease of 3.0%/year in the HIV and the non-HIV groups, respectively. Compared to 1999, the odds ratio (OR) for cancer, external causes, CVD, DM, or TB in the HIV group were, respectively, 2.31, 4.17, 1.76, 2.27 and 1.02, while for the non-HIV group, the corresponding OR were 1.31, 1.63, 1.14, 1.62 and 0.67. Interactions between year as a continuous or categorical variable and HIV were significant (p <0.001) for all conditions, except for DM when year was considered as a continuous variable (p = 0.76). Conclusions: Non HIV-related co-morbidities continue to increase more rapidly as causes of death among HIV-infected individuals than in those without HIV infection, highlighting the need for targeting prevention measures and surveillance for chronic diseases among those patients. © 2014 Paula et al

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore