53 research outputs found

    Effectiveness of Search for Unrelated Donor of Hematopoietic Stem Cells using Russian System Bone Marrow Donor Search: Experience of RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation

    Get PDF
    Background & Aims. The key condition for allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the presence of HLA-compatible related or unrelated donor. If related donor is not found, further search is carried out in the Bone Marrow Donor Worldwide (BMDW) international data base, which is not effective enough (about 80ā€“85 %), because of genotype specificity of Russian Federation residents. The recruitment procedure using BMDW takes a lot of time and is expensive. Therefore, there are good reasons to develop an alternative Russian data base, Bone Marrow Donor Search (BMDS), which includes data from Russian bone marrow donor registries and has a good potential. The aim is to evaluate the effectiveness of hematopoietic stem cell (HSC) donor search and transplant quality using the BMDS search system. Methods. 34 allo-HSCT recipients with malignancies and hematological diseases were enrolled in the study in RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation from November, 2012, to March, 2016. A HLA-compatible donor was found for each patient in the BMDS (www.bmds.info), which includes data from 13 Russian registries of HSC donors. Results. 34 allo-HSCTs were performed from unrelated donors recruited using Russian registries: 1 in 2012; 3 in 2013; 5 in 2014; 21 in 2015; and 4 in the 1st quarter of 2016. The greatest effectiveness of the BMDS search was in 2015 (14 %, n = 17). In 30 cases (88.2 %) a complete 10/10 compatibility for 5 HLA-gene loci was observed; in 4 cases (11.8 %) there was an incomplete compatibility (9/10). AB0 compatibility was only in 7 cases (20.6 %). In 15 cases (44.1 %) bone marrow was used for transplant harvesting; in 19 cases (55.9 %) peripheral blood stem cells were harvested by means of cytapheresis. The CD34+ count in the transplant was 1.2ā€“12.0 x 106 CD34+ cell/kg (median: 5.0 x 106 CD34+ cell/kg). Engraftment was observed in 79.4 % of cases (n = 27), graft failure in 17.7 % of cases (n = 6), and early posttransplant mortality in 2.9 % of cases (n = 1). Conclusion. There was an increasing efficiency of search for a HLA-compatible unrelated HSC donor using a Russian BMDS search system for Russian residents with a graft quality similar to the one found in the international BMDW database

    Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining transcripts of homologs of closely related organisms and retrieving the reconstructed exon-intron patterns of the genes is a very important process during the analysis of the evolution of a protein family and the comparative analysis of the exon-intron structure of a certain gene from different species. Due to the ever-increasing speed of genome sequencing, the gap to genome annotation is growing. Thus, tools for the correct prediction and reconstruction of genes in related organisms become more and more important. The tool Scipio, which can also be used via the graphical interface WebScipio, performs significant hit processing of the output of the Blat program to account for sequencing errors, missing sequence, and fragmented genome assemblies. However, Scipio has so far been limited to high sequence similarity and unable to reconstruct short exons.</p> <p>Results</p> <p>Scipio and WebScipio have fundamentally been extended to better reconstruct very short exons and intron splice sites and to be better suited for cross-species gene structure predictions. The Needleman-Wunsch algorithm has been implemented for the search for short parts of the query sequence that were not recognized by Blat. Those regions might either be short exons, divergent sequence at intron splice sites, or very divergent exons. We have shown the benefit and use of new parameters with several protein examples from completely different protein families in searches against species from several kingdoms of the eukaryotes. The performance of the new Scipio version has been tested in comparison with several similar tools.</p> <p>Conclusions</p> <p>With the new version of Scipio very short exons, terminal and internal, of even just one amino acid can correctly be reconstructed. Scipio is also able to correctly predict almost all genes in cross-species searches even if the ancestors of the species separated more than 100 Myr ago and if the protein sequence identity is below 80%. For our test cases Scipio outperforms all other software tested. WebScipio has been restructured and provides easy access to the genome assemblies of about 640 eukaryotic species. Scipio and WebScipio are freely accessible at <url>http://www.webscipio.org</url>.</p

    Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride

    No full text
    Ammonia borane (AB) is among the most promising precursors for the large-scale synthesis of hexagonal boron nitride (h-BN) by chemical vapour deposition (CVD). Its non-toxic and non-flammable properties make AB particularly attractive for industry. AB decomposition under CVD conditions, however, is complex and hence has hindered tailored h-BN production and its exploitation. To overcome this challenge, we report in-depth decomposition studies of AB under industrially safe growth conditions. In situ mass spectrometry revealed a time and temperature-dependent release of a plethora of NxBy-containing species and, as a result, significant changes of the N:B ratio during h-BN synthesis. Such fluctuations strongly influence the formation and morphology of 2D h-BN. By means of in situ gas monitoring and regulating the precursor temperature over time we achieve uniform release of volatile chemical species over many hours for the first time, paving the way towards the controlled, industrially viable production of h-BN

    Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride.

    No full text
    Ammonia borane (AB) is among the most promising precursors for the large-scale synthesis of hexagonal boron nitride (h-BN) by chemical vapour deposition (CVD). Its non-toxic and non-flammable properties make AB particularly attractive for industry. AB decomposition under CVD conditions, however, is complex and hence has hindered tailored h-BN production and its exploitation. To overcome this challenge, we report in-depth decomposition studies of AB under industrially safe growth conditions. In situ mass spectrometry revealed a time and temperature-dependent release of a plethora of NxBy-containing species and, as a result, significant changes of the N:B ratio during h-BN synthesis. Such fluctuations strongly influence the formation and morphology of 2D h-BN. By means of in situ gas monitoring and regulating the precursor temperature over time we achieve uniform release of volatile chemical species over many hours for the first time, paving the way towards the controlled, industrially viable production of h-BN

    Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene

    No full text
    Commercially available Cu foils are leading candidates as substrates employed for the generation of large-area graphene using chemical vapour deposition (CVD) techniques. However, the growth of highquality graphene on Cu foils is often hindered by contamination particles, which will also be detrimental for many potential applications of graphene. Here we investigate the influence of typical substrate impurities on the formation of CVD graphene using as-received Cu foils of various purities from different suppliers and the same cleaned by popular methods. Analytical characterisation of the Cu foils revealed that contamination particles consist of calcium, aluminium, and silicon oxides. We show that contamination particles are present on foils with purities ranging between 99.8% and 99.9999% and that these particles influence the nucleation density, growth rate, and growth features of graphene domains. Based on our findings we propose new industrially applicable targeted cleaning procedures of immersion in purposely-selected HCl and KOH solutions to chemically dissolve the aforementioned impurities, bringing about improved growth of graphene
    • ā€¦
    corecore