31 research outputs found
Influence of the concentrations of potassium, sodium, and ammonium ions on the cesium sorption with mixed nickel potassium ferrocyanide sorbent based on hydrated titanium dioxide
Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms
Real World Learning: Simulation and Gaming
Simulations and games are being used across a variety of subject areas as a means to provide insight into real world situations within a classroom setting; they offer many of the benefits of real world learning but without some of the associated risks and costs. Lean, Moizer, Derham, Strachan and Bhuiyan aim to evaluate the role of simulations and games in real world learning. The nature of simulations and games is discussed with reference to a variety of examples in Higher Education. Their role in real world learning is evaluated with reference to the benefits and challenges of their use for teaching and learning in Higher Education. Three case studies from diverse subject contexts are reported to illustrate the use of simulations and games and some of the associated issues
Real World Learning and Authentic Assessment
As students increasingly adopt a consumerist lifestyle academics are under pressure to assess and mark more students’ assignments in quicker turn around periods. In no other area is the marketisation shift between student and academic more apparent in the accountability that academics now need to demonstrate to students in their grading and feedback (Boud & Molloy, 2013). When evaluating their higher education experience students are most likely to complain about their grading or feedback (Boud & Molloy, 2013) and National Student Survey results consistently indicate that this category, more than any other, has the highest student dissatisfaction rates (Race, 2014)
Heat transfer and hydrodynamics of slip confusor flow under second-order boundary conditions
Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study
Learning disabilities that affect about 10% of human population are linked to atypical neurodevelopment, but predominantly treated by behavioural interventions. Behavioural interventions alone have shown little efficacy, indicating limited success in modulating neuroplasticity, especially in brains with neural atypicalities. Even in healthy adults, weeks of cognitive training alone led to inconsistent generalisable training gains, or “transfer effects” to non-trained materials. Meanwhile, transcranial random noise stimulation (tRNS), a painless and more direct neuromodulation method was shown to further promote cognitive training and transfer effects amongst healthy adults without harmful effects. It is unknown whether tRNS on the atypically developing brain might promote greater learning and transfer outcomes than training alone. Here, we show that tRNS over the bilateral dorsolateral prefrontal cortices (dlPFCs) improved learning and performance of children with mathematical learning disabilities (MLD) during arithmetic training compared to those who received sham (placebo) tRNS. Training gains correlated positively with improvement on a standardized mathematical diagnostic test, and this effect was strengthened by tRNS. These findings mirror those on healthy adults, and encourage replications using larger cohorts. Overall, this study offers insights into the concept of combining tRNS and cognitive training for improving learning and cognition of children with learning disabilities
Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study
Learning disabilities that affect about 10% of human population are linked to atypical neurodevelopment, but predominantly treated by behavioural interventions. Behavioural interventions alone have shown little efficacy, indicating limited success in modulating neuroplasticity, especially in brains with neural atypicalities. Even in healthy adults, weeks of cognitive training alone led to inconsistent generalisable training gains, or “transfer effects” to non-trained materials. Meanwhile, transcranial random noise stimulation (tRNS), a painless and more direct neuromodulation method was shown to further promote cognitive training and transfer effects amongst healthy adults without harmful effects. It is unknown whether tRNS on the atypically developing brain might promote greater learning and transfer outcomes than training alone. Here, we show that tRNS over the bilateral dorsolateral prefrontal cortices (dlPFCs) improved learning and performance of children with mathematical learning disabilities (MLD) during arithmetic training compared to those who received sham (placebo) tRNS. Training gains correlated positively with improvement on a standardized mathematical diagnostic test, and this effect was strengthened by tRNS. These findings mirror those on healthy adults, and encourage replications using larger cohorts. Overall, this study offers insights into the concept of combining tRNS and cognitive training for improving learning and cognition of children with learning disabilities
Transcranial random noise stimulation and cognitive training to improve learning and cognition of the atypically developing brain: A pilot study
Learning disabilities that affect about 10% of human population are linked to atypical neurodevelopment, but predominantly treated by behavioural interventions. Behavioural interventions alone have shown little efficacy, indicating limited success in modulating neuroplasticity, especially in brains with neural atypicalities. Even in healthy adults, weeks of cognitive training alone led to inconsistent generalisable training gains, or “transfer effects” to non-trained materials. Meanwhile, transcranial random noise stimulation (tRNS), a painless and more direct neuromodulation method was shown to further promote cognitive training and transfer effects amongst healthy adults without harmful effects. It is unknown whether tRNS on the atypically developing brain might promote greater learning and transfer outcomes than training alone. Here, we show that tRNS over the bilateral dorsolateral prefrontal cortices (dlPFCs) improved learning and performance of children with mathematical learning disabilities (MLD) during arithmetic training compared to those who received sham (placebo) tRNS. Training gains correlated positively with improvement on a standardized mathematical diagnostic test, and this effect was strengthened by tRNS. These findings mirror those on healthy adults, and encourage replications using larger cohorts. Overall, this study offers insights into the concept of combining tRNS and cognitive training for improving learning and cognition of children with learning disabilities
