56 research outputs found

    Application of headspace solid-phase microextraction and gas chromatography for the analysis of furfural in crude palm oil

    Get PDF
    Processing of vegetative material containing pentoses has been shown to result in the formation of furfural. Furfural exhibits a spectrophotometric absorption peak at 518 nm when complexed with aniline acetate. Headspace solid-phase microextraction (HS-SPME) method has been successfully used to confirm the presence of furfural in crude palm oil (CPO). Solid phase microextraction (SPME) fiber composed of divinylbenzene/Carboxen/polydimethylsiloxane (DVB/PDMS/CAR) was used to absorb the volatiles in the headspace of the oil. The isolated compounds from the fiber was desorbed and separated on a capillary polar column of a gas chromatograph. Response surface methodology (RSM) was used to optimize the SPME fiber condition for maximum absorption of furfural from CPO. The optimized temperature and time for furfural extraction onto the SPME fiber are 70 °C for 40 min. Oils obtained from the mill were found to contain between 2 and 13% furfural

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere

    Full text link
    The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn't produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6-52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05).These results suggested that the Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems. © 2013 Association of Microbiologists of India

    Dragon fruit (Hylocereus spp.) seed oils: their characterization and stability under storage conditions

    No full text
    Oil was extracted from the seeds of white-flesh and red-flesh dragon fruits (Hylocereus spp.) using a cold extraction process with petroleum ether. The seeds contained significant amounts of oil (32–34 %). The main fatty acids were linoleic acid (C18:2, 45–55 %), oleic acid (C18:1, 19–24 %), palmitic acid (C16:0, 15–18 %) and stearic acid (C18:0, 7–8 %). The seed oils are interesting from a nutritional point of view as they contain a large amount of essential fatty acids, amounting to up to 56 %. In both dragon fruit seed oils, tri-unsaturated triacylglycerol (TAG) was mainly found while their TAG composition and relative percentage however varied considerably. Therefore, they showed a different melting profile. A significant amount of total tocopherols was observed (407–657 mg/kg) in which the a-tocopherol was the most abundant (*72 % of total tocopherol content). The impact of storage conditions, cold and room temperatures, on the oxidative stability and behavior of tocopherols was monitored over a 3-month storage period. During storage, the oxidative profile changed with a favorably low oxidation rate (*1 mequivO2/week) whilst tocopherols decreased the most at room temperature. After 12 weeks, the total tocopherol content, however, still remained high (65–84 % compared to the initial oils). Hereto, the dragon fruit seed oils can be considered as a potential source of essential fatty acids and tocopherols, with a good oxidative resistance
    corecore