238 research outputs found

    Dynamics and spectrum of the Cesàro operator on C-infinity(R+)

    Full text link
    [EN] The spectrum and point spectrum of the Cesaro averaging operator C acting on the Frechet space C-infinity(R+) of all C-infinity functions on the interval [0, infinity) are determined. We employ an approach via C-0-semigroup theory for linear operators. A spectral mapping theorem for the resolvent of a closed operator acting on a locally convex space is established; it constitutes a useful tool needed to establish the main result. The dynamical behaviour of C is also investigated.The research of the first two authors was partially supported by the projects MTM2013-43540-P, GVA Prometeo II/2013/013 and GVA ACOMP/2015/186 (Spain).Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2016). Dynamics and spectrum of the Cesàro operator on C-infinity(R+). Monatshefte für Mathematik. 181:267-283. https://doi.org/10.1007/s00605-015-0863-zS267283181Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic semigroups of operators. Rev. R. Acad. Cien. Serie A Mat. RACSAM 106, 299–319 (2012)Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)Albanese, A.A., Bonet, J., Ricker, W.J.: Uniform mean ergodicity of C0C_0 C 0 -semigroups in a class of in Fréchet spaces. Funct. Approx. Comment. Math. 50, 307–349 (2014)Albanese, A.A., Bonet, J., Ricker, W.J.: On the continuous Cesàro operator in certain function spaces. Positivity 19, 659–679 (2015)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces p+\ell ^{p+} ℓ p + and LpL^{p-} L p - . Glasgow Math. J. (accepted)Arendt, W.: Gaussian estimates and interpolation of the spectrum in LpL^p L p . Diff. Int. Equ. 7, 1153–1168 (1994)Bayart, F., Matheron, E.: Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Boyd, D.W.: The spectrum of the Cesàro operator. Acta Sci. Math. (Szeged) 29, 31–34 (1968)Grosse-Erdmann, K.G., Manguillot, A.P.: Linear chaos. Universitext, Springer Verlag, London (2011)Hille, E.: Remarks on ergodic theorems. Trans. Am. Math. Soc. 57, 246–269 (1945)Jarchow, H.: Locally convex spaces. Teubner, Stuttgart (1981)Komura, T.: Semigroups of operators in locally convex spaces. J. Funct. Anal. 2, 258–296 (1968)Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)Malgrange, B.: Idéaux de fonctions différentiables et division des distributions. Distributions, Editions École Polytechnique, Palaiseau, pp. 1–21 (2003)Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press. Oxford University Press, New York (1997)Seeley, R.T.: Extension of CC^\infty C ∞ functions defined in a half space. Proc. Am. Math. Soc. 15, 625–626 (1964)Siskakis, A.G.: Composition semigroups and the Cesàro operator. J. London Math. Soc. (2) 36, 153–164 (1987)Yosida, K.: Functional analysis. Springer, New York, Berlin, Heidelberg (1980)Valdivia, M.: Topics in locally convex spaces. North-Holland Math. Stud. 67, North-Holland, Amsterdam (1982

    On the continuous Cesàro operator in certain function spaces

    Full text link
    “The final publication is available at Springer via http://dx.doi.org/10.1007/s11117-014-0321-5"Various properties of the (continuous) Cesàro operator C, acting on Banach and Fréchet spaces of continuous functions and L p-spaces, are investigated. For instance, the spectrum and point spectrum of C are completely determined and a study of certain dynamics of C is undertaken (eg. hyper- and supercyclicity, chaotic behaviour). In addition, the mean (and uniform mean) ergodic nature of C acting in the various spaces is identified.The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2015). On the continuous Cesàro operator in certain function spaces. Positivity. 19:659-679. https://doi.org/10.1007/s11117-014-0321-5S65967919Albanese, A.A.: Primary products of Banach spaces. Arch. Math. 66, 397–405 (1996)Albanese, A.A.: On subspaces of the spaces LlocpL^p_{\rm loc} L loc p and of their strong duals. Math. Nachr. 197, 5–18 (1999)Albanese, A.A., Moscatelli, V.B.: Complemented subspaces of sums and products of copies of L1[0,1]L^1 [0,1] L 1 [ 0 , 1 ] . Rev. Mat. Univ. Complut. Madr. 9, 275–287 (1996)Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010)Albanese, A.A., Bonet, J., Ricker, W.J.: C0C_0 C 0 -semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)Bayart, F., Matheron, E.: Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Bellenot, S.F., Dubinsky, E.: Fréchet spaces with nuclear Köthe quotients. Trans. Am. Math. Soc. 273, 579–594 (1982)Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005)Boyd, D.W.: The spectrum of the Cesàro operator. Acta Sci. Math. (Szeged) 29, 31–34 (1968)Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. (Szeged) 26, 125–137 (1965)Dierolf, S., Zarnadze, D.N.: A note on strictly regular Fréchet spaces. Arch. Math. 42, 549–556 (1984)Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory (2nd Printing). Wiley-Interscience, New York (1964)Galaz Fontes, F., Solís, F.J.: Iterating the Cesàro operators. Proc. Am. Math. Soc. 136, 2147–2153 (2008)Galaz Fontes, F., Ruiz-Aguilar, R.W.: Grados de ciclicidad de los operadores de Cesàro–Hardy. Misc. Mat. 57, 103–117 (2013)González, M., León-Saavedra, F.: Cyclic behaviour of the Cesàro operator on L2(0,+)L_2(0,+\infty ) L 2 ( 0 , + ∞ ) . Proc. Am. Math. Soc. 137, 2049–2055 (2009)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos. In: Universitext. Springer, London (2011)Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. In: Reprint of the 1952 Edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988)Krengel, U.: Ergodic theorems. In: De Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Leibowitz, G.M.: Spectra of finite range Cesàro operators. Acta Sci. Math. (Szeged) 35, 27–28 (1973)Leibowitz, G.M.: The Cesàro operators and their generalizations: examples in infinite-dimensional linear analysis. Am. Math. Mon. 80, 654–661 (1973)León-Saavedra, F., Piqueras-Lerena, A., Seoane-Sepúlveda, J.B.: Orbits of Cesàro type operators. Math. Nachr. 282, 764–773 (2009)Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)Meise, R., Vogt, D.: Introduction to functional analysis. In: Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press; Oxford University Press, New York (1997)Metafune, G., Moscatelli, V.B.: Quojections and prequojections. In: Terzioğlu, T. (ed.) Advances in the Theory of Fréchet spaces. NATO ASI Series, vol. 287, pp. 235–254. Kluwer Academic Publishers, Dordrecht (1989)Moscatelli, V.B.: Fréchet spaces without norms and without bases. Bull. Lond. Math. Soc. 12, 63–66 (1980)Piszczek, K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010)Piszczek, K.: Barrelled spaces and mean ergodicity. Rev R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 104, 5–11 (2010)Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980

    Operators on the Fréchet sequence space ces(p+), 1p<1 \leq p < \infty

    Full text link
    [EN] The Fréchet sequence spaces ces(p+) are very different to the Fréchet sequence spaces ¿p+,1¿pp}\ell ^q ℓ p + = ∩ q > p ℓ q . Math. Nachr. 147, 7–12 (1990)Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North Holland, Amsterdam (1987)Pitt, H.R.: A note on bilinear forms. J. Lond. Math. Soc. 11, 171–174 (1936)Ricker, W.J.: A spectral mapping theorem for scalar-type spectral operators in locally convex spaces. Integral Equ. Oper. Theory 8, 276–288 (1985)Robertson, A.P., Robertson, W.: Topological Vector Spaces. Cambridge University Press, Cambridge (1973)Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics, vol. 230. Springer, Berlin (1971

    The Cesàro operator on Korenblum type spaces of analytic functions

    Get PDF
    [EN] The spectrum of the CesA ro operator , which is always continuous (but never compact) when acting on the classical Korenblum space and other related weighted Fr,chet or (LB) spaces of analytic functions on the open unit disc, is completely determined. It turns out that such spaces are always Schwartz but, with the exception of the Korenblum space, never nuclear. Some consequences concerning the mean ergodicity of are deduced.The research of the first two authors was partially supported by the projects MTM2013-43540-P and MTM2016-76647-P. The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.Albanese, A.; Bonet Solves, JA.; Ricker, WJ. (2018). The Cesàro operator on Korenblum type spaces of analytic functions. Collectanea mathematica. 69(2):263-281. https://doi.org/10.1007/s13348-017-0205-7S263281692Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in growth Banach spaces of analytic functions. Integral Equ. Oper. Theory 86, 97–112 (2016)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces p+\ell ^{p+} ℓ p + and LpL^{p-} L p - . Glasgow Math. J. 59, 273–287 (2017)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on power series spaces. Stud. Math. doi: 10.4064/sm8590-2-2017Aleman, A.: A class of integral operators on spaces of analytic functions, In: Proceedings of the Winter School in Operator Theory and Complex Analysis, Univ. Málaga Secr. Publ., Málaga, pp. 3–30 (2007)Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)Aleman, A., Peláez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ. Math. J. 61, 1–19 (2012)Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010)Aleman, A., Siskakis, A.G.: An integral operator on HpH^p H p . Complex Var. Theory Appl. 28, 149–158 (1995)Aleman, A., Siskakis, A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)Barrett, D.E.: Duality between AA^\infty A ∞ and AA^{- \infty } A - ∞ on domains with nondegenerate corners, Multivariable operator theory (Seattle, WA, 1993), pp. 77–87, Contemporary Math. Vol. 185, Amer. Math. Soc., Providence (1995)Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993)Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998)Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272, 107–160 (1982)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 54, 70–79 (1993)Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 64, 101–118 (1998)Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)Domenig, T.: Composition operators on weighted Bergman spaces and Hardy spaces. Atomic Decompositions and Diagonal Operators, Ph.D. Thesis, University of Zürich (1997). [Zbl 0909.47025]Domenig, T.: Composition operators belonging to operator ideals. J. Math. Anal. Appl. 237, 327–349 (1999)Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. 2nd Printing. Wiley Interscience Publ., New York (1964)Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York, Chicago San Francisco (1965)Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000)Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175(1), 19–40 (2006)Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Melikhov, S.N.: (DFS )-spaces of holomorphic functions invariant under differentiation. J. Math. Anal. Appl. 297, 577–586 (2004)Persson, A.-M.: On the spectrum of the Cesàro operator on spaces of analytic functions. J. Math. Anal Appl. 340, 1180–1203 (2008)Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)Siskakis, A.: Volterra operators on spaces of analytic functions—a survey. In: Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, pp. 51–68 (2006

    Weighted composition operators on Korenblum type spaces of analytic functions

    Full text link
    [EN] We investigate the continuity, compactness and invertibility of weighted composition operators W-psi,W-phi: f -> psi(f circle phi) when they act on the classical Korenblum space A(-infinity) and other related Frechet or (LB)-spaces of analytic functions on the open unit disc which are defined as intersections or unions of weighted Banach spaces with sup-norms. Some results about the spectrum of these operators are presented in case the self-map phi has a fixed point in the unit disc. A precise description of the spectrum is obtained in this case when the operator acts on the Korenblum space.This research was partially supported by the research project MTM2016-76647-P and the grant BES-2017-081200.Gomez-Orts, E. (2020). Weighted composition operators on Korenblum type spaces of analytic functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(4):1-15. https://doi.org/10.1007/s13398-020-00924-1S1151144Abramovich, Y.A., Aliprantis, C.D.: An invitation to operator theory. Graduate Studies in Mathematics. Amer. Math. Soc., 50 (2002)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces p+\ell ^{p+} and LpL^{p-}. Glasgow Math. J. 59, 273–287 (2017)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69(2), 263–281 (2018)Albanese, A.A., Bonet, J., Ricker, W.J.: Operators on the Fréchet sequence spaces ces(p+),1pces(p+), 1\le p\le \infty . Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 1533–1556 (2019)Albanese, A.A., Bonet, J., Ricker, W.J.: Linear operators on the (LB)-sequence spaces ces(p),1pces(p-), 1\le p\le \infty . Descriptive topology and functional analysis. II, 43–67, Springer Proc. Math. Stat., 286, Springer, Cham (2019)Arendt, W., Chalendar, I., Kumar, M., Srivastava, S.: Powers of composition operators: asymptotic behaviour on Bergman, Dirichlet and Bloch spaces. J. Austral. Math. Soc. 1–32. https://doi.org/10.1017/S1446788719000235Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic funcions. Israel J. Math. 141, 263–276 (2004)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 54(1), 70–79 (1993)Bonet, J.: A note about the spectrum of composition operators induced by a rotation. RACSAM 114, 63 (2020). https://doi.org/10.1007/s13398-020-00788-5Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Austral. Math. Soc., Ser. A, 64(1), 101–118 (1998)Bourdon, P.S.: Essential angular derivatives and maximum growth of Königs eigenfunctions. J. Func. Anal. 160, 561–580 (1998)Bourdon, P.S.: Invertible weighted composition operators. Proc. Am. Math. Soc. 142(1), 289–299 (2014)Carleson, L., Gamelin, T.: Complex Dynamics. Springer, Berlin (1991)Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL (1995)Contreras, M., Hernández-Díaz, A.G.: Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc., Ser. A 69, 41–60 (2000)Eklund, T., Galindo, P., Lindström, M.: Königs eigenfunction for composition operators on Bloch and HH^\infty spaces. J. Math. Anal. Appl. 445, 1300–1309 (2017)Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199. Springer, New York (2000)Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)Kamowitz, H.: Compact operators of the form uCφuC_{\varphi }. Pac. J. Math. 80(1) (1979)Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)Köthe, G.: Topological Vector Spaces II. Springer, New York Inc (1979)Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomophic functions. Stud. Math. 75, 19–45 (2006)Meise, R., Vogt, D.: Introduction to functional analysis. Oxford Grad. Texts in Math. 2, New York, (1997)Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc. 61(3), 872–884 (2000)Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet series. Hindustain Book Agency, New Delhi (2013)Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc. 162, 287–302 (1971)Zhu, K.: Operator Theory on Function Spaces, Math. Surveys and Monographs, Amer. Math. Soc. 138 (2007

    Some results about diagonal operators on Köthe echelon spaces

    Full text link
    [EN] Several questions about diagonal operators between Köthe echelon spaces are investigated: (1) The spectrum is characterized in terms of the Köthe matrices defining the spaces, (2) It is characterized when these operators are power bounded, mean ergodic or uniformly mean ergodic, and (3) A description of the topology in the space of diagonal operators induced by the strong topology on the space of all operators is given.This research was partially supported by MINECO Project MTM2016-76647-P and the grant PAID-01-16 of the Universitat Politècnica de València.Rodríguez-Arenas, A. (2019). Some results about diagonal operators on Köthe echelon spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):2959-2968. https://doi.org/10.1007/s13398-019-00663-yS295929681134Agathen, S., Bierstedt, K.D., Bonet, J.: Projective limits of weighted (LB)-spaces of continuous functions. Arch. Math. 92, 384–398 (2009)Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34(2), 401–436 (2009)Bennett, G.: Some elementary inequalities. Quart. J. Math. 38, 401–425 (1987)Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. (1996). https://doi.org/10.1090/memo/0576Bierstedt, K.D.: An introduction to locally convex inductive limits, Functional analysis and its applications (Nice, 1986), 35–133, ICPAM Lecture Notes. World Sci. Publishing, Singapore (1988)Bierstedt, K.D., Bonet, J.: Some aspects of the modern theory of Fréchet spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97(2), 159–188 (2003)Bierstedt, K.D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces, Functional Analysis, Holomorphy and Approximation Theory. North-Holland Math. Studies 71, 27–91 (1982)Bonet, J., Jordá, E., Rodríguez-Arenas, A.: Mean ergodic multiplication operators on weighted spaces of continuous functions. Mediterr. J. Math 15, 108 (2018)Crofts, G.: Concerning perfect Fréchet spaces and transformations. Math. Ann. 182, 67–76 (1969)Kellogg, C.N.: An extension of the Hausdorff–Young theorem. Michig. Math. J. 18, 121–127 (1971)Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, New York (1997)Vasilescu, F.H.: Analytic Functional Calculus and Spectral Decompositions. D. Reidel Publ. Co., Dordrecht (1982)Wengenroth, J.: Derived Functors in Functional Analysis. Springer, Berlin (2003)Yosida, K.: Functional Analysis. Springer, Berlin (1980

    Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions

    Full text link
    [EN] We develop a theory of pseudodifferential operators of infinite order for the global classes S. of ultradifferentiable functions in the sense of Bjorck, following the previous ideas given by Prangoski for ultradifferentiable classes in the sense of Komatsu. We study the composition and the transpose of such operators with symbolic calculus and provide several examples.The first author was partially supported by the project GV Prometeo 2017/102, and the second author by the project MTM2016-76647-P. This article is part of the PhD. Thesis of V. Asensio. The authors are very grateful to the two referees for the careful reading and their suggestions and comments, which improved the paper.Asensio, V.; Jornet Casanova, D. (2019). Global pseudodifferential operators of infinite order in classes of ultradifferentiable functions. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3477-3512. https://doi.org/10.1007/s13398-019-00710-8S347735121134Albanese, A.A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012)Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6, 351–407 (1966)Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446(1), 920–944 (2017)Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17(3–4), 206–237 (1990)Braun, R.W.: An extension of Komatsu’s second structure theorem for ultradistributions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40(2), 411–417 (1993)Cappiello, M.: Fourier integral operators of infinite order and applications to SG-hyperbolic equations. Tsukuba J. Math. 28(2), 311–361 (2004)Cappiello, M., Pilipović, S., Prangoski, B.: Parametrices and hypoellipticity for pseudodifferential operators on spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 5(4), 491–506 (2014)Fernández, C., Galbis, A., Jornet, D.: ω\omega -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297(2), 561–576 (2004). Special issue dedicated to John HorváthFernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005)Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)Hashimoto, S., Morimoto, Y., Matsuzawa, T.: Opérateurs pseudodifférentiels et classes de Gevrey. Commun. Partial Differ. Equ. 8(12), 1277–1289 (1983)Hörmander, L.: Pseudo-differential operators. Commun. Pure Appl. Math. 18, 501–517 (1965)Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965)Komatsu, H.: Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)Langenbruch, M.: Continuation of Gevrey regularity for solutions of partial differential operators. In Functional analysis (Trier, 1994), pages 249–280. de Gruyter, Berlin (1996)Nicola, F.: Rodino, Luigi: Global pseudo-differential calculus on Euclidean spaces, volume 4 of Pseudo-Differential Operators. Theory and Applications. Birkhäuser Verlag, Basel (2010)Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013)Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific Publishing Co., Inc., River Edge (1993)Shubin, M.A.: Pseudodifferential operators and spectral theory. Springer-Verlag, Berlin, second edition. Translated from the 1978 Russian original by Stig I. Andersson (2001)Zanghirati, L.: Pseudodifferential operators of infinite order and Gevrey classes. Ann. Univ. Ferrara Sez. VII (N.S.) 31, 197–219, 1985 (1986

    Mean ergodicity and spectrum of the Cesàro operator on weighted c0 spaces

    Full text link
    [EN] A detailed investigation is made of the continuity, the compactness and the spectrum of the Cesàro operator C acting on the weighted Banach sequence space c0(w) for a bounded, strictly positive weight w. New features arise in the weighted setting (e.g. existence of eigenvalues, compactness, mean ergodicity) which are not present in the classical setting of c0.The research of the first two authors was partially supported by the Projects MTM2013-43540-P, GVA Prometeo II/2013/013 and ACOMP/2015/186 (Spain).Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2016). Mean ergodicity and spectrum of the Cesàro operator on weighted c0 spaces. Positivity. 20:761-803. https://doi.org/10.1007/s11117-015-0385-xS76180320Akhmedov, A.M., Başar, F.: On the fine spectrum of the Cesàro operator in c0c_0 c 0 . Math. J. Ibaraki Univ. 36, 25–32 (2004)Akhmedov, A.M., Başar, F.: The fine spectrum of the Cesàro operator C1C_1 C 1 over the sequence space bvp,(1p<)bv_p, (1 \le p < \infty ) b v p , ( 1 ≤ p < ∞ ) . Math. J. Okayama Univ. 50, 135–147 (2008)Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)Albanese, A.A., Bonet, J., Ricker, W.J.: Spectrum and compactness of the Cesàro operator on weighted p\ell _p ℓ p spaces. J. Aust. Math. Soc. 99, 287–314 (2015)Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces p+\ell ^{p+} ℓ p + and LpL ^{p-} L p - . Glasg. Math. J (to appear)Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. Szeged 63, 195–207 (1997)Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. Szeged 26, 125–137 (1965)Curbera, G.P., Ricker, W.J.: Spectrum of the Cesàro operator in p\ell ^p ℓ p . Arch. Math. 100, 267–271 (2013)Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on p\ell ^p ℓ p and c0c_0 c 0 . Integr. Equ. Oper. Theory 80, 61–77 (2014)Curbera, G.P., Ricker, W.J.: The Cesàro operator and unconditional Taylor series in Hardy spaces. Integr. Equ. Oper. Theory 83, 179–195 (2015)Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)Dowson, H.R.: Spectral Theory of Linear Operators. Academic Press, London (1978)Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory, 2nd Printing. Wiley Interscience Publ, New York (1964)Emilion, R.: Mean-bounded operators and mean ergodic theorems. J. Funct. Anal. 61, 1–14 (1985)Goldberg, S.: Unbounded Linear Operators: Theory and Applications. Dover Publ, New York (1985)Hille, E.: Remarks on ergodic theorems. Trans. Am. Math. Soc. 57, 246–269 (1945)Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)Krengel, U.: Ergodic Theorems. de Gruyter, Berlin (1985)Leibowitz, G.: Spectra of discrete Cesàro operators. Tamkang J. Math. 3, 123–132 (1972)Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)Mureşan, M.: A Concrete Approach to Classical Analysis. Springer, Berlin (2008)Okutoyi, J.I.: On the spectrum of C1C_1 C 1 as an operator on bv0bv_0 b v 0 . J. Aust. Math. Soc. Ser. A 48, 79–86 (1990)Radjavi, H., Tam, P.-W., Tan, K.-K.: Mean ergodicity for compact operators. Studia Math. 158, 207–217 (2003)Reade, J.B.: On the spectrum of the Cesàro operator. Bull. Lond. Math. Soc. 17, 263–267 (1985)Rhoades, B.E., Yildirim, M.: The spectra and fine spectra of factorable matrices on c0c_0 c 0 . Math. Commun. 16, 265–270 (2011)Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958

    A characterization of the wave front set defined by the iterates of an operator with constant coefficients

    Full text link
    [EN] We characterize the wave front set WF*P (u) with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution u is an element of D '(Omega), Omega an open subset in R-n. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type.The authors were partially supported by FAR2011 (Universita di Ferrara), "Fondi per le necessita di base della ricerca" 2012 and 2013 (Universita di Ferrara) and the INDAM-GNAMPA Project 2014 "Equazioni Differenziali a Derivate Parziali di Evoluzione e Stocastiche" The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P.Boiti, C.; Jornet Casanova, D. (2017). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(3):891-919. https://doi.org/10.1007/s13398-016-0329-8S8919191113Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015)Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716)Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. In: Séminaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., PalaiseauBonet, J., Fernández, C., Meise, R.: Characterization of the ω\omega ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000)Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)Fernández, C., Galbis, A., Jornet, D.: ω\omega ω -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297, 561–576 (2004)Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008)Hörmander, L.: On interior regularity of the solutions of partial differential equations. Comm. Pure Appl. Math. XI, 197–218 (1958)Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971)Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1983)Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010)Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Math. 208(1), 31–46 (2012)Komatsu, H.: A characterization of real analytic functions. Proc. Jpn. Acad. 36, 90–93 (1960)Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962)Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979)Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979)Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985)Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987)Métivier, G.: Propriété des itérés et ellipticité. Comm. Partial Differ. Equ. 3(9), 827–876 (1978)Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Amer. Math. Soc. 39(3), 547–552 (1973)Rodino, L.: On the problem of the hypoellipticity of the linear partial differential equations. In: Buttazzo, G. (ed.) Developments in Partial Differential Equations and Applications to Mathematical Physics. Plenum Press, New York (1992)Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific, Singapore (1993)Zanghirati, L.: Iterates of a class of hypoelliptic operators and generalized Gevrey classes. Boll. U.M.I. Suppl. 1, 177–195 (1980

    Mean ergodic composition operators on generalized Fock spaces

    Full text link
    [EN] Every bounded composition operator C psi defined by an analytic symbol psi on the complex plane when acting on generalized Fock spaces F phi p,1 <= p <=infinity and p=0, is power bounded. Mean ergodic and uniformly mean ergodic bounded composition operators on these spaces are characterized in terms of the symbol. The behaviour for p=0 and p=infinity differs. The set of periodic points of these operators is also determined.The research of the first author is supported by ISP project, Addis Ababa University, Ethiopia. The research of the third author was partially supported by the research projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain).Seyoum, W.; Mengestie, T.; Bonet Solves, JA. (2019). Mean ergodic composition operators on generalized Fock spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 114(1):1-11. https://doi.org/10.1007/s13398-019-00738-wS1111141Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Anal. Acad. Sci. Fenn. Math. 34, 401–436 (2009)Beltrán-Meneu, M.J., Gómez-Collado, M.C., Jordá, E., Jornet, D.: Mean ergodic composition operators on Banach spaces of holomorphic functions. J. Funct. Anal. 270, 4369–4385 (2016)Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austr. Math. Soc. Ser. A 54, 70–79 (1993)Blasco, O.: Boundedness of Volterra operators on spaces of entire functions. Ann. Acad. Sci. Fenn. Math. 43, 89–107 (2018)Bonet, J., Domański, P.: A note on mean ergodic composition operators on spaces of holomorphic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105, 389–396 (2011)Bonet, J., Mangino, E.: Associated weights for spaces of pp-integrable entire functions. Quaestiones Math. (2019). https://doi.org/10.2989/16073606.2019.1605420Bonet, J., Ricker, W.J.: Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Arch. Math. 92, 428–437 (2009)Carswell, B.J., MacCluer, B.D., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. (Szeged) 69, 871–887 (2003)Constantin, O., Peláez, J.Á.: Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces. J. Geom. Anal. 26, 1109–1154 (2015)Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)Dunford, N.: Spectral theory I convergence to projections. Trans. Am. Math. Soc. 54, 185–217 (1943)Guo, K., Izuchi, K.: Composition operators on Fock type space. Acta Sci. Math. (Szeged) 74, 807–828 (2008)Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)Lotz, H.P.: Tauberian theorems for operators on L1L^1 and similar spaces. In: Bierstedt, K.D., Fuchssteiner, B. (eds.) Functional Analysis: Surveys and Recent Results III, pp. 117–133. North Holland, Amsterdam (1984)Lotz, H.P.: Uniform convergence of operators on L L^{\infty } and similar spaces. Math. Z. 190, 207–220 (1985)Lusky, W.: On the isomophism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006)Mengestie, T., Ueki, S.: Integral, differential and multiplication operators on weighted Fock spaces. Complex Anal. Oper. Theory. 13, 935–958 (2019)Mengestie, T., Seyoum, W.: Topological and dynamical properties of composition operators. Complex Anal. Oper. Theory (2018) (to appear)Mengestie, T., Seyoum, W.: Spectral properties of composition operators on Fock-Type spaces. Quaest. Math. (2019). https://doi.org/10.2989/16073606.2019.1692092Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)Wolf, E.: Power bounded composition operator. Comp. Method Funct. Theory 12, 105–117 (2012)Yosida, K.: Functional Analysis. Springer, Berlin (1978)Yosida, K., Kakutani, S.: Operator-theoretical treatment of Markoff’s Process and Mean Ergodic Theorem. Ann. Math. 42, 188–228 (1941
    corecore