22 research outputs found

    An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughterhouse wastewater

    Get PDF
    Microalgae have high nutritional values for aquatic organisms compared to fish meal, because microalgae cells are rich in proteins, lipids, and carbohydrates. However, the high cost for the commercial production of microalgae biomass using fresh water or artificial media limits its use as fish feed. Few studies have investigated the potential of wet market wastewater and slaughterhouse wastewater for the production of microalgae biomass. Hence, this study aims to highlight the potential of these types of wastewater as an alternative superior medium for microalgae biomass as they contain high levels of nutrients required for microalgae growth. This paper focuses on the benefits of microalgae biomass produced during the phycore-mediation of wet market wastewater and slaughterhouse wastewater as fish feed. The extraction techniques for lipids and proteins as well as the studies conducted on the use of microalgae biomass as fish feed were reviewed. The results showed that microalgae biomass can be used as fish feed due to feed utilisation efficiency, physiological activity, increased resistance for several diseases, improved stress response, and improved protein retention

    Biochemical changes in Oenothera biennis plants infected by 'Candidatus Phytoplasma solani'

    No full text
    The aim of the present paper was to study the response of Oenothera biennis L. to 'Candidatus Phytoplasma solani' (Stolbur) infection by analyzing total sugars, polyphenols, photosynthetic pigments content and the antioxidant capacity in leaves and roots of healthy and infected plants. The infection caused a significant increase in peroxidation of lipids, phenylalanine ammonia-lyase activity, total sugar, polyphenols and anthocyanins content (2.8, 2.6, 1.8, 1.4, 6.8 fold, respectively), as well as a decrease in photosynthetic pigments (2-6 fold) and total flavonoids (1.5 fold) in the leaves of Oe. biennis. Changes in these parameters were insignificant in the roots except for the total polyphenols content that was 2.7 times higher in the infected ones. Reduced gluthatione content in both tested organs was not affected by the infection (3.7 and 1.7 mu mol/g fresh weight of leaves and roots, respectively). The elevated content of total sugars, flavonoids and polyphenols, as well as the reduction of photosynthetic pigments and anthocyanins in infected plants are indicative of changes in the metabolism of Oe. biennis affected by the Stolbur phytoplasma. In addition to reduction of chlorophyll and carotenoids, the phytoplasma accelerated leaf senescence. Plants responded to the infection via enhanced superoxide anion scavenging, even though this reaction did not prevent, apparently, membrane damage in analysed leaves. This investigation presents new data on the effect of a phytoplasma infection on its host
    corecore