22 research outputs found

    Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design

    Full text link
    We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results

    On Finding Maximum Cardinality Subset of Vectors with a Constraint on Normalized Squared Length of Vectors Sum

    Full text link
    In this paper, we consider the problem of finding a maximum cardinality subset of vectors, given a constraint on the normalized squared length of vectors sum. This problem is closely related to Problem 1 from (Eremeev, Kel'manov, Pyatkin, 2016). The main difference consists in swapping the constraint with the optimization criterion. We prove that the problem is NP-hard even in terms of finding a feasible solution. An exact algorithm for solving this problem is proposed. The algorithm has a pseudo-polynomial time complexity in the special case of the problem, where the dimension of the space is bounded from above by a constant and the input data are integer. A computational experiment is carried out, where the proposed algorithm is compared to COINBONMIN solver, applied to a mixed integer quadratic programming formulation of the problem. The results of the experiment indicate superiority of the proposed algorithm when the dimension of Euclidean space is low, while the COINBONMIN has an advantage for larger dimensions.Comment: To appear in Proceedings of the 6th International Conference on Analysis of Images, Social Networks, and Texts (AIST'2017

    A 0.821-ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs

    Get PDF
    We study the polynomial time approximation of the max k-vertex cover problem in bipartite graphs and propose a purely combinatorial algorithm that beats the only such known algorithm, namely the greedy approach. We present a computer-assisted analysis of our algorithm, establishing that the worst case approximation guarantee is bounded below by 0.821. © Springer-Verlag Berlin Heidelberg 2016

    On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives

    Full text link
    We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding a given budget. As the resources are owned by strategic agents however, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Budget-feasibility creates additional challenges, making several approaches inapplicable in this setting. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin first with a purely algorithmic result, obtaining a 2ee1\frac{2e}{e-1}-approximation for maximizing symmetric submodular functions under a budget constraint. We view this as a standalone result of independent interest, as it is the best known factor achieved by a deterministic algorithm. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.Comment: A conference version appears in WINE 201

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    On the Hardness of Energy Minimisation for Crystal Structure Prediction

    Get PDF
    Crystal Structure Prediction (csp) is one of the central and most challenging problems in materials science and computational chemistry. In csp, the goal is to find a configuration of ions in 3D space that yields the lowest potential energy. Finding an efficient procedure to solve this complex optimisation question is a well known open problem. Due to the exponentially large search space, the problem has been referred in several materials-science papers as "NP-Hard and very challenging" without a formal proof. This paper fills a gap in the literature providing the first set of formally proven NP-Hardness results for a variant of csp with various realistic constraints. In particular, we focus on the problem of removal: the goal is to find a substructure with minimal potential energy, by removing a subset of the ions. Our main contributions are NP-Hardness results for the csp removal problem, new embeddings of combinatorial graph problems into geometrical settings, and a more systematic exploration of the energy function to reveal the complexity of csp. In a wider context, our results contribute to the analysis of computational problems for weighted graphs embedded into the three-dimensional Euclidean space.Comment: Short version published in SOFSEM 2020, full version to be published in Fundamenta Informatica

    Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures

    No full text
    corecore