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Abstract

Crystal Structure Prediction (csp) is one of the central and most challenging problems in
materials science and computational chemistry. In csp, the goal is to find a configuration of ions
in 3D space that yields the lowest potential energy. Finding an efficient procedure to solve this
complex optimisation question is a well known open problem in computational chemistry. Due to
the exponentially large search space, the problem has been referred in several materials-science
papers as “NP-Hard and very challenging” without any formal proof though. This paper fills a
gap in the literature providing the first set of formally proven NP-Hardness results for a variant of
csp with various realistic constraints. In particular, we focus on the problem of removal : the goal
is to find a substructure with minimal potential energy, by removing a subset of the ions from
a given initial structure. Our main contributions are NP-Hardness results for the csp removal
problem, new embeddings of combinatorial graph problems into geometrical settings, and a more
systematic exploration of the energy function to reveal the complexity of csp. In a wider context,
our results contribute to the analysis of computational problems for weighted graphs embedded
into the three-dimensional Euclidean space.

1 Introduction

One of the central and most challenging problems in materials science and computational chemistry is
the problem of predicting the structure of a crystal given the set of ions composing it. At a high level,
the goal there is to find a configuration structure of ions in a three-dimensional box that achieves
the lowest energy. This problem, termed Crystal Structure Prediction (csp), has remained open due
to the complexity of solving it optimally [18] and the combinatorial explosion following a brute-force
approach. There are many previous approaches to this problem, largely based on heuristic techniques
[10, 12, 14, 16], which have shown some promise, however they still lack the ability to guarantee
optimality and moreover they are computationally very demanding.

In the most generic formulation of csp there are many degrees of freedom due to the numerous
parameters of the model: the number of ions to place, their positions, and the unique interactions
between each type of ion. Furthermore, real crystals are based on periodic tessellations of 3D space
with unit cells whose size and shape may also be changed. The search space remains exponential in
size even for greatly simplified versions of csp. Due to this, csp has, incorrectly, been referred to in
several computational-chemistry papers as “NP-Hard and very challenging” [13]. However, from the
computational-theory viewpoint the argument that the search must be done in a set of exponential
size does not imply NP-Hardness.
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On the other hand, the two results which are often mentioned in context of the NP-Hardness of
csp are [3] and [17]. In [3], within the context of the Ising model, the authors show NP-Hardness in
the model of placing ±1 charges on a graph taking into account only interactions between connected
vertices. The reduction works on a grid where each vertex has degree at most 6, making the interaction
very local. In [17], it was shown that the problem of placing ions for some given positions is in NP
by reducing the problem to TSP. However the reduction goes only one way and does not imply the
NP-Hardness of the problem.

In our work, we consider several special variants of csp and provide a few alternative reasons
for the hardness of closely related problems. We take inspiration from hard combinatorial problems
in graph theory and propose several new embeddings of NP-Hard graph problems into numerical
versions of csp which can be seen as an optimisation problem for weighted geometric graphs with a
non-linear objective function. We focus on the problem of removal. Here, the input is a configuration
of the ions, and the goal is to remove a subset of the ions such that the interaction energy among the
atoms is minimised.The problem of removing vertices of a graph whose deletion results in a subgraph
satisfying some specific property have been intensively studied in the combinatorial graph theory. In
[9], it was shown that for a large class of properties this problem is NP-Complete. In [19] and [20] this
was extended to further properties showing NP-Completeness for bipartite graphs and for non-trivial
hereditary properties.

The removal problem can be seen as a variant of combinatorial csp problem, where the positions of
the ions correspond to points in discrete grid/lattice. For example, we may find an optimal structure
for csp by placing many copies of the ions that we wish to use to build a new structure in unrealistic
positions in the discrete space. This may involve ions “overlapping”, i.e., being unrealistically close.
Due to the nature of the energy function, when the goal is to minimise the potential energy, the
overlapping ions must be removed. In our variant of removal problem for which we show NP-Hardness
results, the initial configuration (from where we remove ions) is part of the input and has only vacant
positions or positions with a single ions in the discrete three-dimensional-Euclidean space.
Our contributions. We give the first NP-Hardness results with more realistic constraints for csp [7],
we provide new embeddings of combinatorial graph problems in geometrical settings, and we explore
in a more systematic way the energy function that could reveal the computational complexity of csp.
Moreover, our results can be seen as part of a more general problem of removing vertices from a
weighted graph embedded into 3D Euclidean space.

The main challenges for the Euclidean graphs we consider is that they are complete and that the
edges are weighted proportional to the distance between their vertices. As such, many classical NP-
Hard problems are much harder to embed into this setting. Even for some existing hardness results,
in both the geometric and more restricted Euclidean setting, to bring these problems into a bounded
number of dimensions often require non-trivial technical proofs as dimension often is part of the input
[1, 11]. In some of our constructions we utilise the results on geometric graphs embedded into the plane
[5, 6], however many problems in this field remain open. We also study the optimisation problems
where we change parameters in the energy function, weights of the nodes, and also restricting their
ranges. In this paper we consider three specific versions of the removal problem in Euclidean setting:

• k-Charge Removal: Remove exactly k charges to minimise the total energy;

• Minimal-At-Least-k-Charge Removal: A generalisation of k-charge removal where the re-
moved set is a minimal set of at least k charges minimising the total energy;

• At-Least-k-Charge Removal: A generalisation of minimal-at-least-k-charge removal where
the removed set is of least charges but not necessarily minimal, minimising the total energy.

In all cases we require the sum of the positively weighted vertices to equal the magnitude of the sum
of negatively weighted vertices in the set that we are removing. The first version is k-charge removal,
where for a given k we must remove a set of vertices such that the sum of vertices with positive
weights is equal to k. We note in Corollary 1 that determining if there is a solution to this problem
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when we have an unbounded number of possible charges for the ions is NP-Hard. One generalisation
that will get around this problem is minimal-at-least-k-charge removal, where the sum of the weights
of positively weighted vertices is greater than or equal to k, and the set is minimal, meaning that
no strict subset of the removed vertices satisfies the required properties. While every instance of this
problem will have a minimal set, we show in Proposition 3 that in the case of unbounded charges it
is NP-Hard to verify if any given solution is minimal. We may remove the requirement for a solution
to be minimal to avoid this, getting the at-least-k-charge removal problem.

We will also consider a variety of settings for these problems, varying the energy function for the
crystal, restrictions on the charges and restrictions on the number of ion species. We summarise our
results in Table 1. Regarding energy functions, we will primarily consider the class of controllable
energy functions, F , which we define in Section 2, and the Buckingham-Coulomb potential function,
which is popular in computational chemistry. We show in Proposition 1 that Buckingham-Coulomb
belongs to the class F . One further energy function we will consider is the Coulomb potential, which is
used to calculate the electrostatic potential. We show that depending on the energy function used, and
the restrictions on the ion species and charges, we are able to reduce several different combinatorial
problems to our problems.

The remainder of this work will be organised as follows: in Section 2 we discuss the preliminaries of
these problems, providing relevant notation and definitions. In Section 3 we present our results for the
general case of the problems, claiming NP-Hardness with Theorems 1 and 2 for energy functions in F
and an unbounded number of ion species. We also consider some natural restrictions to this problem.
In Section 4 we consider the restriction of having only two species of ion under the Buckingham-
Coulomb potential as our energy function, showing that the problem remains NP-Hard under these
restrictions in Theorem 4. In Section 5 we consider the restriction to only the Coulomb potential, this
time with no restrictions on the number of species of ions or the charges of the ions. In Theorem 5
we show that under these restrictions the problem remains NP-Hard.

Theorem Summary Setting
Theorem 1 NP-Completeness by

reduction from the
clique problem.

All problems, under any energy function in F ,
charges of ±c for a given c and an unbounded
number of ion species.

Theorem 2 NP-Completeness by
extension of Theorem
1.

All problems, under any energy function in F , any
bounded set of charges and an unbounded number
of ion species.

Theorem 3 Reduction to max-
weight-k-clique.

k-charge removal or minimal-at-least-k-charge re-
moval under any computable energy function,
charges of ±c for a given c, and a unbounded num-
ber of ion species.

Theorem 4 NP-Completeness by
reduction from inde-
pendent set on penny
graphs.

All problems, under the Buckingham-Coulomb
potential energy function, charges of ±1, and two
species of ion.

Theorem 5 NP-Completeness by
reduction from the
knapsack problem.

Minimal-at-least-k-charge removal and at-least-k-
charge removal, under the Coulomb potential en-
ergy function, unbounded number of charges and
unbounded number of ion species.

Table 1: Summary of our results and their corresponding settings.
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2 Preliminaries

Unit Cell. A crystal is a solid material whose ions, are arranged in a highly ordered arrangement,
forming a crystal structure that extends in all directions. A crystal structure is described by its unit
cell; a region of three dimensional space within a parallelepiped representing a period that contains
ions in a specific arrangement. The unit cells are stacked in three dimensional space tiling the whole
space forming a crystal. The unit cell is a parallelepiped alongside the arrangement of ions with their
specie. Each unit cell contains a set of n ions within the parallelepiped. Each ion, i, has a specie, e.g.
Ti or Sr, and a non-zero charge qi. The specie for an ion i will be denoted S(i). In every crystal the
unit cell is neutrally charged, i.e.,

∑
1≤i≤n

qi = 0. An arrangement defines a position for every ion in

the unit cell, i.e. the positions within R3.
Energy. The most frequently used technique to compute the energy of a crystal is by summing the
pairwise interactions between all pairs of ions. A positive value for the pairwise interaction means
the two ions are repelling, while a negative value means they are attracting each other. Formally, for
each pair of species there is a unique set of parameters - called force fields - which are applied to the
common energy function U alongside the Euclidean distance between the ions. In general, energy is
defined via series as a crystal is infinite.

In this paper interaction will be restricted with respect to the energy function to a single unit cell
only. The primary reason is that the energy between ions in different unit cells quickly converges,
making the energy within a single unit cell a good approximation of the total. A second reason is that
it is much quicker to compute the energy for a finite set of ions than it is to compute the convergence
over an infinite series.

Each arrangement has n ions and a corresponding potential energy PE, calculated with respect to
the given common energy function U . The goal is to minimise the potential energy. i.e. maximise the
magnitude of a negative PE. The pairwise interaction between two ions i and j with respect to the
energy function U is U(i, j), denoted Uij when it is clear from the context. The value of Uij is defined
by the force field of the ions and the Euclidean distance between them, which is included as one of the
parameters. The total potential energy for an arrangement of n ions is given by PE =

∑
1≤i,j≤n,i 6=j

Uij .

This paper will consider a general class of energy functions, called the controllable potential func-
tions, denoted by F . All functions in F are required to be computable in polynomial time for any
input. Intuitively, for every f ∈ F there exists a set of force field parameters that counteract the effect
of the distance parameter r. Formally, a function f : Rn 7→ R belongs to F if and only if for any given
a ∈ R and any fixed r ∈ R+ there exists a set {x1 . . . xn−1} ∈ Rn−1 such that f(x1, . . . , xn−1, r} = a.

The most popular function for crystal structure prediction, which will be focused on in this paper, is
the Buckingham-Coulomb potential [4], which is the sum of the Buckingham and Coulomb potentials.
The Coulomb potential for a pair of ions i, j is defined as UCij =

qiqj
rij

, where rij is the Euclidean distance

between the ions. The Buckingham potential for a pair of ions i, j, UBij , is defined by four parameters.
These are the distance and the three force field parameters, AS(i),S(j), BS(i),S(j), CS(i),S(j), which
are dependent on the specie of the ions. It should be noted that all three parameters are positive

values. The energy is calculated as UBij =
AS(i),S(j)

e
BS(i),S(j)rij

− CS(i),S(j)

r6ij
. Therefore the Buckingham-Coulomb

potential is given by

UBCij = UBij + UCij =
AS(i),S(j)

eBS(i),S(j)rij
−
CS(i),S(j)

r6ij
+
qiqj
rij

.

Proposition 1. There exists a set of parameters for the Buckingham-Coulomb function such that it
is in F .

Proof. Given a value a and a pair of ions, i and j, at a distance of rij with arbitrary charges qi and
qj , the parameters may be set so that the potential at a distance of rij is a. BS(i),S(j) is set to 0 and
the values of AS(i),S(j) and CS(i),S(j) are set as follows. If a > 0
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AS(i),S(j) =

{
a, if qiqj > 0;

a+
|qiqj |
rij

, otherwise.
CS(i),S(j) =

{
qiqjr

5
ij , if qiqj > 0;

0, otherwise.

If a ≤ 0

AS(i),S(j) =

{
0, if qiqj > 0;
|qiqj |
rij

, otherwise.
CS(i),S(j) =

{
|a|r6ij + qiqjr

5
ij , if qiqj > 0;

|a|r6ij , otherwise.

Substituting 0 for BS(i),S(j) into the Buckingham-Coulomb potential, the equation becomes

UBCij = AS(i),S(j) −
CS(i),S(j)

r6ij
+
qiqj
rij

.

Cancelling out the coulomb potential either by adding qiqjr
5
ij to CS(i),S(j) in the case qiqj > 0 or

|qiqj |
rij

to AS(i),S(j) in the case qiqj ≤ 0. In the first case the energy added by the Coulomb potential will be
|qiqj |
rij

, which will be cancelled by the addition of qiqjr
5
ij when multiplied by the −1

r6ij
term applied to

CS(i),S(j). Otherwise the Coulomb energy will be
−|qiqj |
rij

, which will be cancelled out by the relevant

addition from AS(i),S(j).
By the same arguments the addition of an a term to either AS(i),S(j) or CS(i),S(j) with the appro-

priate multiplier, will leave just the value of a. Note that in the case that a is negative, the magnitude
must be added to CS(i),S(j) so that once the multiplier has been applied it will act as a negative
value.

Crystals as geometric graphs. Using the above definitions, it can be shown how crystals may
be viewed as geometric graphs. Recall that each ion corresponds to a charged point in R3. Each ion is
represented with a weighted vertex, also placed into R3 at the same position as the ion, giving a total
of n vertices. The vertex corresponding to the ion i, denoted vi, is assigned a weight of qi. wt(vi)
will denote the weight of a given vertex vi, i.e. wt(vi) = qi. For notation, V + will denote the set of
vertices with a positive weight in V , and V − for the set of vertices with a negative weight in V . This
can be extended to a set of ions A, using A+ for the positively charged ions and A− for the negatively
charged ions.

Between each pair of vertices there is an edge, weighted by the pairwise interaction of the corre-
sponding ions Uij . Note that from its definition Uij will be determined in part by the length of the
edge, which will be drawn as a straight line in the space. The energy of a crystal graph G = {V,E}
can be computed as PE =

∑
{vi,vj}∈E

Uij .

Geometric graphs created from a unit cell will be referred to as crystal graphs. In the remainder
of this work crystals will be described in terms of their physical structure where it makes sense to be
considering the ions, and as a graph otherwise.

The k-Charge Removal Problem. The k-charge removal problem, henceforth k-charge re-
moval, will take as input a crystal graph G corresponding to a “dense” initial arrangement of ions,
with the goal of removing some vertices in order to minimise the energy of the new subgraph G′ ⊂ G.
It will be assumed that the initial graph is charge-neutral, as defined in Definition 1. As G′ must
also be neutral, any set of vertices which is removed must therefore be neutral. Using intuition from
chemistry regarding the number of ions within a realistic unit cell, a natural number k of charges to
remove is chosen, as defined in Definitions 2 and 3.

Definition 1. A set of vertices R is neutral if
∑
vi∈R

wt(vi) = 0.

Definition 2. A set of k-Charges R from a crystal graph {V,E} is a neutral subset where R ⊆ V

and

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣ =

∣∣∣∣∣ ∑vj∈R− wt(vj)
∣∣∣∣∣ = k.

5



Informally, a set of k-charges is a set of vertices with a total weight is 0, while the magnitudes of the
sums of all positively weighted vertices, and of all negatively weighted vertices is k

Definition 3. A removal of a set of vertices R from a graph {V,E} is the graph {V ′, E′} where
V ′ = V \R and E′ is the set of edges in E with no endpoint in R.

Informally, a removal is the result of removing a set of vertices and the incident edges from a given
graph.

Problem 1. k-Charge Removal (k-charge removal)

Instance: A crystal graph G, with edges weighted by a given common energy function U ,
and a natural number k.

Goal: The set of k-charges R from G where G′ = {V ′, E′} created by the removal of
R from G which minimises

∑
{vi,vj}∈E′

Uij .

A decision problem can be derived from k-charge removal by asking if there exists a removal that
leaves G′ with no-more total energy than some goal g, i.e.

∑
vi,vj∈V ′,i6=j

Uij ≤ g.

The At-Least-k-Charge Removal Problem. One generalisation of k-charge removal is the
at-least-k-charge removal problem, denoted at-least-k-charge removal. This problem takes the
same input as in k-charge removal, however rather than looking to remove a set of exactly k-
charges, it is instead sufficient to remove a neutral set of at-least-k-charges. The motivation for
this comes from the case that it is not be possible to remove exactly k for some given k. In this
generalisation more than k charges may be removed, provided the cell remains neutral. Note that any
removal of exactly k will also be valid for this generalisation.

Definition 4. A set of At-Least-k-Charges R from a crystal graph {V,E} is a neutral subset where
R ⊆ V and

∑
vi∈R+

wt(vi) ≥ k.

Problem 2. At-Least-k-Charge Removal (at-least-k-charge removal)

Instance: A crystal graph G, with edges weighted by a given common energy function U ,
and a natural number k.

Goal: The set of at-least-k-charges R from G where G′ = {V ′, E′} created by the
removal of R from G which minimises

∑
{vi,vj}∈E′

Uij .

Proposition 2. A solution to k-charge removal or at-least-k-charge removal can be verified
in polynomial time.

Proof. A solution to k-charge removal contains the set of vertices R that are removed. This can be
verified as a set of at-least-k-charges by simply summing up the positive and negative weights, checking

that the set is neutral and that

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣ = k for k-charge removal or

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣ ≥ k for

at-least-k-charge removal. This will take time of the order of O(|R|). Similarly the sum of the
edges in the original graph G that do not have an endpoint in R can be checked against the goal value
g. This can be done in O(|V |2) time, as the graph is complete. Therefore as no step will take more than
O(|V |2) time, a solution to at-least-k-charge removal can be verified in polynomial time. Hence
k-charge removal and at-least-k-charge removal fall into the class of NP problems.
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The Minimal-At-Least-k-Charge Removal Problem An alternative restriction of at-least-
k-charge removal is the minimal-at-least-k-charge removal problem, denoted minimal-at-least-
k-charge removal. This also serves as a generalisation of k-charge removal, where the goal is
to get close to a set of k-charges, however accepting that it may not be possible to reach the exact
value. In this problem a minimal set of at-least-k-charges is removed.

Definition 5. A set R of at-least-k-charges is minimal if there exists no subset R′ ⊂ R such that∣∣∣∣∣ ∑vi∈R′+ wt(vi)
∣∣∣∣∣ ≥ k and

∣∣∣∣∣ ∑vi∈R′+ wt(vi)
∣∣∣∣∣ =

∣∣∣∣∣ ∑vj∈R′− wt(vj)
∣∣∣∣∣.

Informally, Definition 5 means that there is no way of getting closer a set of k-charges from the set,
without having fewer than k charges. It follows that for a given crystal graph, there may be multiple
minimal at-least-k-charge sets for a given k. A removal of at-least-k-charges is minimal if the set
of at-least-k-charges is minimal. It may be noted that a set of k-charges is always a minimal set of
at-least-k-charges.

Problem 3. Minimal-at-least-k-Charge Removal (k-charge removal)

Instance: A crystal graph G, with edges weighted by a common energy function U , and a
natural number k.

Goal: The minimal set of k-charges R from G where for G′ = {V ′, E′} created by the
removal of R from G which minimises

∑
{vi,vj}∈E′

Uij .

Proposition 3. It is NP-Hard to verifying if a set of at-least-k-charges is minimal when no bounds
are given on the value of the charges.

Proof. This can be shown by a reduction from the subset-sum problem. In the subset-sum problem
there is a set of values S, and a goal k. The goal is to choose some subset S′ ⊆ S such that

∑
i∈S′

i = k.

Note that this problem remains NP-complete in the case the input is only positive integers.
Given an instance of subset sum I = {S, k}, a crystal graph is created as follows as follows. For

each integer i ∈ S a new vertex with a weight of i is created, note these will correspond to the set
V +. Two further ions are created, the first having a charge of −k and the second having a charge

of −

(( ∑
vi∈V +

wt(vi)

)
− k

)
, these will correspond to V −. The value k′ is chosen as the greater of k

and

( ∑
vi∈V +

wt(vi)

)
− k.

Given this instance it can be claimed that the only minimal k′-charge removal from I is R = V . To
disprove this is minimal there must be some subset R′ ⊂ R that is also a set of at-least-k-charges. As
k′ charges must be removed, any such V ′− must only contain the vertex in V − with a charge of −k′.

Therefore if this claim is false, there must be a set R′+ ⊆ R+ such that

∣∣∣∣∣ ∑vi∈R′+ wt(vi)
∣∣∣∣∣ = k′. If there

is such a R′ then there is also have a solution to the subset sum instance as either R′+ or R+ \ R′+.
This can be shown as if k′ = k, the the values in R′+ must sum to k, satisfying I. Conversely if

k′ =

∣∣∣∣∣ ∑vi∈R′+ wt(vi)
∣∣∣∣∣, then the ions in R+ \R′+ must sum to k satisfying I. If there is no such subset

then there must be no solution to I, as such a solution would allow the existence of a R′+ for this set.
In the other direction, if there is a solution to I then trivially there must be exist such a R′+ that

would make R′ non-minimal. Similarly if there is no valid solution to I then the only minimal set of
k-charges is the complete set of ions. Therefore it can not be determined if the a solution is minimal
in polynomial time. Subsequently as a minimal set of charges for at-least-k-charge removal is
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required, a solution can not be verified in polynomial time, therefore it is not in NP in the general
case.

Corollary 1. It is NP-Hard to determine if an instance of k-charge removal has a valid solution
in the case there are no bounds on the value of the charges.

Proof. It follows from the arguments of Proposition 3 that an instance of k-charge removal may
be constructed for a subset sum instance I = {S, k} such that it is only satisfiable if the subset sum
instance is.

Corollary 2. A set of k-charges may be verified as minimal in polynomial time for charge values
bounded by a polynomial size.

Proof. In the case the charges are bounded a solution to the subset sum may be found in polynomial
time, for example relative to either the upper limit on the value due to Pisinger [15], or for the number
of distinct weights relative and the goal value due to Axiotis and Tzamos [2]. Using these a set of k-

charge R can be verified a minimal. This is done by, for every value 1 ≤ t ≤

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣−k checking

if there a subset of charges R′+ ∈ R+ and R′− ∈ R− such that t =

∣∣∣∣∣ ∑vi∈R′+ wt(vi)
∣∣∣∣∣ =

∣∣∣∣∣ ∑vi∈R′− wt(vi)
∣∣∣∣∣.

If there exists such a solution for any t then R is not minimal.
The claimed energy may also be verified by checking the sum of pairwise interactions relative

to U , with may trivially be done in Polynomial time by the definition of U . Therefore under these
restrictions at-least-k-charge removal is in NP.

3 NP-Hardness for an unbounded number of ion species

This section will focus on the class of potential functions F . It will be assumed that the energy function
for all cases is an arbitrary function in F for which the parameters required by the ions to result in
the energy from their pairwise interaction to be any arbitrary a are known. NP-completeness for
k-charge removal as well as for the generalisations to minimal-at-least-k-charge removal
and at-least-k-charge removal will be shown when there are bounds on value of the charges
(either quantity of charges, or the maximum value). It may be noted that in the case the charges are
not bounded, minimal-at-least-k-charge removal will remain NP-Hard, however as it will not
be in NP it will not be complete. Moreover k-charge removal and minimal-at-least-k-charge
removal when all vertices have a weight of ±c for a given c can be reduced to max-weight-k-clique.

Theorem 1. k-charge removal, minimal-at-least-k-charge removal and at-least-k-charge
removal are NP-Complete for energy functions in F for charges of ±c, for any natural number c.

Proof. k-charge removal and at-least-k-charge removal are in NP by Proposition 2, and
as the charges are bounded, minimal-at-least-k-charge removal will be in NP by Corollary
2. Hardness is established via a reduction from clique. This is shown by reduction to k-charge
removal, noting that any satisfying solution to k-charge removal will also satisfy at-least-k-
charge removal and minimal-at-least-k-charge removal.

In the Clique problem, henceforth clique, the input is a graph, G, and a natural number, k. The
goal is to find a clique of size k in G, or report that no such clique exists. A clique is a set of vertices
in a graph such that all vertices in the set are adjacent to each other.

Given an instance of clique, I = (G, k) = ((E, V ), k) where n = |V |, an instance, I ′, of k-charge
removal is constructed as follows. A unit cell of arbitrary size is chosen. Within this cell 2n unique
positions are created at arbitrary places. In the first n positive ions are placed and in the last n
negative ions are placed. Each ion has its own unique specie. Every vertex vi ∈ V corresponds to two
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ions, i+ and i− with charges c and −c respectively. For two ions i and j associated with vi and vj
respectively the parameters are set so as to satisfy the following:

Uij =

{
−1 vi = vj or {vi, vj} ∈ E
∞ otherwise.

The definition of F guarantees that there exists parameters satisfying these conditions irrespective
of the positions, and thus the distance rij , of the ions. The goal vale is chosen as g = k(2k−1), noting
that there are k(2k− 1) edges in a clique of size 2k. Let k′ = n− k, noting that to remove k′ positive
and k′ negative ions ck′ charges must be removed.

From this the corresponding crystal graph G′ = {V ′, E′} is constructed as described in the pre-
liminaries. Let the vertices v+i , v

−
i ∈ V ′ represent the ions corresponding to vi ∈ V . v±i will be used

to denote either v+i or v−i where the charge doesn’t matter i.e. we are only concerned with the vertex
in G that v±i corresponds to. From the definition of the energy function, wt(v±i , v

±
j ) = −1 if i = j or

{vi, vj} ∈ E, and ∞ otherwise.
It may now be claimed that I will be satisfiable if and only if I ′ is satisfiable. First consider the

case that I is satisfiable. In this case ck′ charges may be removed from I ′, leaving only the vertices
corresponding to the clique in I, denoted A. As all vertices in A correspond to adjacent vertices in G,
the energy will simply be −1 multiplied by the number of edges, giving a total energy of −k(2k − 1),
satisfying the k-charge removal instance. Conversely if there does not exist a clique of size k in
G then any subset of vertices A ⊆ V ′ of cardinality k clearly must contain at least one edge with a
weight of ∞, making I unsatisfiable.

Assume now I ′ is satisfiable, where R is the set of removed vertices and A = V ′ \ R are the
remaining vertices. Note thate the energy must be at most −k(2k − 1), and there have exactly 2k
vertices in A. As the only negative weight edges in G′ are those between two vertices representing
either the same or adjacent vertices in G. Clearly this can only be achieved by having a set of vertices
in G′ representing vertices in a clique of size k in G. Similarly if I ′ is unsatisfiable then there can
not be a clique of size k, as this would imply I ′ is satisfiable. Therefore this problem is NP-Complete
in the case that all ions have charges of ±c for any natural number c for k-charge removal. The
problem is also NP-Complete for at-least-k-charge removal and minimal-at-least-k-charge
removal, as the minimum energy for any at-least-k-charge removal will be −k(2k − 1), which can
only be achieved by a k-charge removal.

It can be noted that this may be extended to other graph problems relatively easily. One example
of this would be the max-weight k-clique problem. In max-weight k-clique takes as input a
weighted graph G, a natural number k, and a goal value v. The problem is to report if a clique of
size k where the sum of the weights of the edges is at least v exists. Using the above construction, a
crystal graph G′ may be created from G. From this the weights on the edges may be adjust as follows:

Uij =


−wt(vi, vj) vi 6= vj an {vi, vj} ∈ E
−c vi = vj

∞ otherwise.

Where wt(vi, vj) denotes the weight between vertices vi and vj in G and c is some constant such that
@vi, vj ∈ E s.t. wt(vi, vj) ≥ c. The goal value for the k-charge removal instance is chosen as
−k · c− v. The correctness of this reduction follows from the arguments in Theorem 1.

Theorem 2. k-charge removal remains NP-Hard for set of allowed charges with unique magnitude
and an energy function within F .

Proof. The construction of Theorem 1 may be extended to the case the set of charges is limited to any
set of allowed charges. Two charges are chosen from this set, c and d such that |c| > |d| and cd < 0
such that |c| − |d| is minimised. The same steps as in Theorem 1 are followed for the construction to
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get an initial crystal graph G = {V,E} and k′.. Note that I will have a charge deficiency of n(|c|−|d|),
meaning that some set of vertices must be added to make the cell neutral. To handle the deficiency
two sets of dummy vertices with charges of c and d will be created.

The first set will be to deal with the deficiency that would be left from a clique of size k. To
construct these, a natural number t is chosen such that there exists a pair of natural numbers tc and
td such that tc|c| = t and td|d| = k(|c − d|) + t. Using these, tc vertices with a charge of c and td
vertices with a charge of c and td with a charge of d are added. From the definition of F , the energy
between them and all ions in G and between each other can be set as 0.

The second set of dummy vertices will be to counteract the overall deficiency in the initial unit
cell. A natural number u is chosen such that there exists a pair of natural numbers uc and ud where
u = |c|(uc + tc) and u+ n(|c| − |d|) = |d|(ud + td). uc vertices with a charge of c and ud vertices with
a charge of d are added. The potential energy between between them and all other vertices, including
the set of previously added dummy vertices, is ∞.

To ensure that the best set of ions to be left with will be a clique of size k as well as all of the
dummy vertices added in the first step, the following is done. The goal energy remains the same as
from Theorem 1. It can be seen that the only way to achieve this is to leave vertices corresponding
to a clique of size at least k. As there are c(n+ uc + tc) charges for one set, and the goal is to be left
with c(k+ tc), a value k′ is chosen to remove as c(n+ uc − k). In the case that exactly k′-charges are
removed, either the dummy vertices or some other vertices corresponding to a clique of size greater
than k, ensuring the set remains neutral will be left. In the at-least-k′ case, some dummy vertices
may also be removed provided the cell remains neutral.

From the arguments in Theorem 1 it can be seen that this will be sufficient to ensure the new
instance is satisfiable if and only if the original clique instance is. Therefore these problems are
NP-Hard, even in the case that there are distinct charges c and d, |c| 6= |d|.

While there are simple reductions to other NP-Complete problems such as Integer Programming, em-
bedding this problem into many classical problems is made difficult due to the problem of maintaining
the neutrality of the unit cell. To this end, Theorem 3 shows how a restricted version of k-charge
removal may be embedded into max-weight k-clique.

Theorem 3. k-charge removal can be reduced to max-weight k-clique in polynomial time, un-
der the restriction that charges are limited ±c and the energy function is computable within polynomial
time.

Proof. Note that, given charges of ±c, a valid solution to minimal-at-least-k-charge removal
will either be valid for k-charge removal, or there will be no valid solutions to k-charge removal.
Taking as input an instance of minimal-at-least-k-charge removal with charges of ±c with the
corresponding crystal graph, it will be claimed that this instance may be represented as an instance
of the weighted generalisation of clique.

In weighted k-clique, denoted weighted-k-clique, the input is a weighted graph, a goal value v,
and a natural number k. An instance of weighted-k-clique is satisfiable if and only if there exist
a clique of size k such the the sums of the weight of the edges in the clique is at least v.

Given an instance of minimal-at-least-k-charge removal I = {G, k} = {{V,E}, k}, an in-

stance I ′ of weighted-k-clique is created as follows. A value k′ is chosen as |V
+|−k
c rounded down

to the nearest natural number. Note that if (|V +| − k)( mod c) 6≡ 0, then there is no valid solution
to k-charge removal, however there may still be some valid solution to minimal-at-least-k-
charge removal. A new graph G′ = {V ′, E′} is created which will initially be empty. For each pair
of vertices with different charges a new associated vertex in V ′ is created. An edge is created between
each new vertex if and only if the corresponding vertices are all unique, i.e. given the set of vertices
V + = {vi, vj}, and v− = {vk, vl} an edge would be placed between the new vertex representing
(vi, vk) and the one representing (vj , vl), but not from either to the vertex representing (vi, vl). Give
two connected vertices corresponding to vertices (vi, vk) and (vj , vl) the edged is assigned a value of
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a+ b+ c+

d− e− f−

a, d a, e a, f

b, d

c, d

b, e

c, e

b, f

c, f

Figure 1: Example of the construction from at-least-k-charge removal to clique. Note that
vertices a, b, and c have a positive weight, while d, e, and f have a negative weight. Also note that
any clique of size 3 will correspond to the original graph.

−
(
Uij + Uil + Ujk + Ukl +

Uij+Ujl

k′−1

)
to the edge between them. The intuition behind this is for the

edge to maintain the weights of the edges in G.
Uik+Ujl

k′−1 is added to this so that within a clique of size
k′, the edge between the two vertices is fully represented. An example of this construction is shown
in Figure 1, omitting weights for legibility.

It may now be claimed that any clique of size m will correspond to a neutrally weighted subset

A ⊆ V where

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ = mc. This is shown by noting that vertices are only connected if they do

not represent a common vertex. As such a clique of size m must contain m unique positively weighted
and m unique negatively weighted vertices for the corresponding vertices to be connected as a clique.
Therefore by selecting any clique of size k′ in this graph, it can be seen that there will be a valid
structure left with exactly k′ unique positively weighted and k′ unique negatively weighted vertices.
From the definition of k′ this will correspond to an subgraph of G after a minimal removal of k.

It may now be claimed that a maximum weight clique of size k′ will correspond to the best subset
of ions after a k charge removal. Note that given a clique with total weight w corresponds to a set
of ions with total energy −w. It is a straightforward extension to see that a maximum weight clique
will correspond to a minimum energy subset of ions. This can be seen by noting that by choosing

k′ as the size of the clique, the corresponding arrangement A ⊆ V will have

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ = ck′.

From the definition of k′, this requires

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑vi∈V +

wt(vi)

∣∣∣∣∣ − k, which will satisfy the

requirements for a k charge removal. Conversely the definition of k′ ensures that the removal must
be minimal. Therefore the optimal solution to the weighted-k-clique instance must correspond
to an optimal solution to the minimal-at-least-k-charge removalk-charge removal instance.
Similarly any valid solution to the weighted-k-clique instance will correspond to some solution to
the minimal-at-least-k-charge removal instance.

4 Bounded number of species with Buckingham-Coulomb po-
tential

In Section 3 NP-Hardness was shown for the case that there was an unbounded number of species,
and NP-completeness in the case that there is a bounded number of charges. This will now be
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strengthened by considering instances with only two unique species. Only the Buckingham-Coulomb
potential function with charges of ±1 will be considered in this section. All three problems will
again be considered, noting that for charges of ±1 k-charge removal is equivalent to minimal-
at-least-k-charge removal. NP-Hardness will be shown by a reduction from independent-set
on penny graphs adapting it to the Euclidean settings of crystal graph of ions within a unit cell.
The Independent Set problem, denoted independent-set, takes as input a graph, G, and a natural
number k. The goal is to find an independent set, i.e. a set of vertices such that no two are adjacent, of
size k in G, or report that one does not exist. Penny graphs are the class of graphs where each vertex
may be drawn as a unit circle such that no two circles overlap, and an edge between two vertices
exist if and only if the corresponding circles are tangent, i.e. they intersect at only a single point.
Finding an independent set on this class of graphs was shown to be NP-Hard by Cerioli et al. [5].
The NP-Hardness result for this problem comes from a reduction from max-degree 3 Planar Vertex
cover, which was shown to be NP-Complete by Garey and Johnson [8].

Construction of the k-charge removal instance: Starting with an instance of independent-
set on a maximum degree 3 planar graph, containing the graph and a natural number k an instance
of k-charge removal is created as follows. Using Theorem 1.2 from Cerioli et al. to create a new
penny graph realisation, G, and a new natural number k. The class of graphs created by this process
will be denoted as the long orthogonal penny graphs. For the realisation the radius of each circle is
chosen as n

2 .
A region of space in R3 with a height of at least 1 and a width and length allowing G may be

drawn is created. This space will be the parallelepiped for the unit cell. In this space, two copies of
G are drawn such that one is has a height 1 heigher than the other. For every circle in G two ions are
created, one in the lower copy of G and the other in the higher copy. Each ion is labelled with the
vertex from G it corresponds to. In this context pair refers to the two ions in the new crystal graph
G′, labelled with the same vertex from G. Two pairs are neighbouring if they represent vertices that
are adjacent in G. The lower ions are assigned the positive specie and the upper ions the negative.
An example of this arrangement is provided in Figure 2. Note that the minimum distance between
two pairs in the same plane that are non-adjacent for circles with a radius of n will be

√
2n, as shown

in Figure 3.
The positive and negative species are assigned charges of +1 and −1 respectively. From these

species there are parameters for the interaction between two ions of the positive specie, two ions of
the negative specie, and between one ion of the positive specie and one of the negative specie. For
brevity, 1 and 2 will be used to denote the positive and negative specie respectively. Under this
construction, the interaction between the two ions of the positive specie is the same as between two
ions of the negative specie. Therefore the parameters that may be set are A11, B11, C11, A12, B12, and
C12.

Let k′ = n − k, being the number of charges that are required to be removed to be left with an
independent set of size k. Note that as the charge of each ion has a magnitude of one, a removal
of k′ can only be achieved by removing k′ positive and k′ negative ions. The goal energy for the
construction is set as g = (k− 1)( A12

eB12
−C12− 1). To simplify the equations regarding the interaction

between planes, r̂ will be used to denote
√
r2 + 1.

An independent set will be said to be left if the ions left after a removal of k′ charges have labels
corresponding to an independent set in G. To ensure that an independent set is left of size k if and
only if one exists, the following three inequalities must be satisfied:
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A11

eB11n
− C11

n6
+

1

n
+

A12

eB12n̂
− C12

n̂6
− 1

n̂
≥
∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ (1)

n2
∣∣∣∣ A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂

∣∣∣∣ ≤ ∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ , r ≥
√

2n (2)

A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂
> 0, r ≥

√
2n (3)

In Lemmas 1, 2 and 3 it will be assumed that when removing k′ charges, it will be preferable to
choose k′ pairs over any other set of charges in the arrangement. This will be proven in Lemma 4.

Lemma 1. Inequalities (1) and (2) are sufficient to ensure that an independent set is left if one exists.

Proof. It can be seen that inequality (1) will ensure that if there are two pairs corresponding to
points that intersect, the total energy will always decrease the total energy by removing one of the
pairs. Inequality (2) compliments this by ensuring that given a pair corresponding to a vertex with
no adjacent neighbours, the total energy would increase by removing it. This holds even in the case
that all other pairs are at a distance of

√
2n. It can be seen that these two inequalities combined will

mean that the global minimum total energy for any subset will be the maximum independent set.
Note that the total energy will decrease with the cardinality of the given independent set.

Lemma 2. There exists, for any structure created from a long orthogonal penny graph, some param-
eters such that Inequalities (1, 2) and (3) are satisfied.

Proof. Values are chosen for A12, B12 and C12 such that the energy for any pair of ions of opposite
charge at a distance of 1 is −1. This is achieved by choosing a value of 1

2n2 for A12, 0 for B12, and
1

2n2 for C12. Note that these values for A12 and B12 will lead to a constant interaction of 1
n2 between

ions on separate planes. This simplifies the energy equation to

UBC(r) =
A11

eB11r
− C11

r6
+

1

r
+

1

2n2
− 1

2n2r̂6
− 1

r̂
.

To satisfy Inequality 1, UBC(n) > 1. This may be satisfied by choosing values for A11, B11, and
C11 such that A11

eB11n − C11

n6 = 1, noting that 1
2n2 − 1

2n2r̂6 + 1
r −

1
r̂ > 0 for all positive distances greater

than 1. This can be satisfied by solving the equation A11

eB11n − C11

n6 = 1, choosing A11 = C11e
Bn

n6 + eBn.

Inequality (2) requires that at a distance of at least
√

2n the total energy is no more than 1
n2 .

This can be satisfied at a distance of
√

2n by ensuring that the A11

eB11
√

2n
− C11

8n6 = 0, which can be

satisfied after substituting in the appropriate value for A11 with C11 = eBn

eB
√

2n

(
1

(
√

2n)6
− eBn

n6eB
√

2n

) , which

simplifies to n6

e(
√

2−1)Bn−8
. Finally, consider the value of B11. Note that the value of both A11 and

C11 depend greatly on B11, with a small increase in B11 leading to a very rapid increase in the value
of A11 and a rapid decrease in C11. Similarly, the value of the energy given by A11

eB11r − C11

r6 rapidly
decreases initially before converging at approximately 0, which can be seen by noting that the first
derivative with respect to r of this equation for a given n is −BA11

eBr + 6C11

r7 . As such by choosing a
suitably large B11 Inequality (2) can be easily satisfied, one obvious choice for this would be B11 = n.

Note that both A11

eBr and C11

r6 will strictly decrease, therefore if
∣∣A11

eBr

∣∣ ≤ 1
2n2 − 1

r + 1
r̂ and

∣∣C11

r6

∣∣ ≤ 1
r−

1
r̂

both Inequalities (2) and (3) are satisfied. From the value of B11 this becomes n6

e(
√

2−1)n2−8
, which

will be positive and less than 1
n2 for any n ≥ 6. Note that 1

r −
1
r̂ ≥

1
r6 for any r ≥ 1.3, hence it

is clear that C11

r6 ≤
1
r −

1
r̂ for n ≥ 6. Considering A11

eBr at a distance of
√

2n, the equation becomes
A11

en2
√

2
= C11

n6en2
√

2
+ 1

e(
√

2−1)n2 , from the previous arguments it follows that this will be considerably less

than ≤ 1
2n2 − 1

r + 1
r̂ for n ≥ 6.
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Finally it can be noted that due to the constant 1
2n2 term there is a positive value for any distance

greater than
√

2n, satisfying Inequality (3). Using these values, it is now shown how to choose a set
of parameters which satisfy the Inequalities.

Lemma 3. Given k pairs, the energy will be less than (k− 1)( A12

eB12
−C12 − 1) if and only if the pairs

correspond to an independent set of size k, for A12

eB12
− C12 − 1 < 0.

Proof. Given k pairs, the energy between the ions in each pair will be A12

eB12
− C12 − 1, for a total

of k(( A12

eB12
− C12 − 1)). Inequality (2) ensures that the maximum energy gained from pairs of ions

corresponding to non-intersecting circles will be at most |(( A12

eB12
− C12 − 1))|. Inequality (3) ensures

that having charges on the same plane will lead to a slight positive charge. From this it follows that
the maximum energy a set of ions corresponding to an independent set will be (k−1)( A12

eB12
−C12−1).

Conversely, from Inequality (1) it is known that if there is a pair of intersecting circles the total energy
must be greater than (k − 1)( A12

eB12
− C12 − 1).

It can be noted for at-least-k-charge removal that if greater than k′ pairs were removed
this energy could not be achieved as the minimum energy would be (k − 1)( A12

eB12
− C12 − 1) for the

interaction within pairs. As there is a positive interaction between pairs, the total energy must be
slightly greater than this for any k > 1. Therefore it can be seen that the total energy will be less
than (k − 1)( A12

eB12
− C12 − 1) if and only if there is an independent set of size k left. It can be noted

that under the choice of variables from Lemma 2, the upper bound of will be −(k − 1).

Lemma 4. When removing k′ charges from the construction from a long orthogonal penny graph, it
is always preferable to remove pairs provided that Inequalities (1- 3) hold.

Proof. Assume that this statement is false, there must be some assignment where it is preferable
to remove some set of at least two vertices, v+i and v−j , that do not form a pair with any ions
that have be removed. Assume that there are t positive and t negative vertices in the graph.
If instead v−j was left in, while v+i was removed, the remaining energy would change by at least

−1 + t

(
A11

eB11
√

2n
− C11

(
√
2n)6

+ 1√
2n

+ A12

eB12
√̂

2n
− C12
√̂
2n

6 − 1
√̂
2n

)
. From the arguments in Lemma 1 and the

construction in Lemma 2 it can be seen that this will lead to a decrease in total energy, making it
preferable and therefore contradicting the assumption. Note that given a positively weighted vertex
of the maximum degree, in this case 3, it could contribute at most 3

2n2 − 3
2n8 − 3

n which will have a
magnitude less than 1 for any n ≥ 3. Therefore, by contradiction this holds.

Theorem 4. k-charge removal, minimal-at-least-k-charge removal and at-least-k-charge
removal are NP-Complete when limited to only two species of ion and restricted to the Buckingham-
Coulomb potential energy function.

Proof. Building on the results from Lemmas 1, 2, 3, and 4, NP-Completeness will now be shown.
Lemma 1 shows that, provided Inequalities (1) and (2) hold, the optimal solution will be to leave an
independent set. From Lemma 2 it follows that these inequalities are satisfiable for any graph under
the given construction, noting that the assignment of parameters gives an energy of −1 within pairs.
Lemma 3 shows that the upper bound is reachable if and only if an independent set has been left.
It follows from Lemma 4 that the assumption that it is preferable to remove a set of pairs over any
other set of charges holds when the inequalities also do.

Therefore there will be a satisfiable instance of k-charge removal or any generalisation if and
only if the instance of independent set for the maximum degree 3 planar graph instance is satisfiable.
Conversely if the independent set instance is satisfiable, the corresponding k-charge removal
instance can be satisfied by leaving the vertices corresponding to the independent set in the long
orthogonal penny graph construction. Hence under these restriction all three problems will be NP-
complete. Note that this may be extended to charges of ±c for any given c.
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v1

v2 v3

v+1

v+2 v+3

v−1

v−2 v−3

Figure 2: Example of the construction of an arrangement from a penny graph, om this example v1
and v2 are adjacent, as are v2 and v3, but not v1 and v3

n

n

√
2n

√
3n

√
3n

n

n

n
n

Figure 3: Illustration of the distances between the centre of non-adjacent pennies using the construc-
tion of Cerioli et al. [5].

5 Restriction to the Coulomb potential with unbounded charges

The final case that will be considered in this work is when the energy function is the Coulomb
potential. NP-Hardness for this case will be shown by a reduction from knapsack to at-least-
k-charge removal. Note that with an unbounded number charges this problem is not in NP for
minimal-at-least-k-charge removal due to Proposition 3 and is trivially NP-Hard for k-charge
removal due to Corollary 1. This reduction requires using an unbounded number of charges, thus
it follows from proposition 3 that it is NP-Hard to verify if a solution to an instance of at-least-k-
charge removal is minimal.

In this reduction it will be shown that an instance of at-least-k-charge removal such that
the set of ions left will correspond to the items for the knapsack instance if and only if there is a set
satisfying the knapsack instance.

Theorem 5. at-least-k-charge removal and minimal-at-least-k-charge removal remains
NP-Hard when the energy function is limited to the Coulomb potential.

Proof. In the knapsack problem, henceforth knapsack, the input is a bag with capacity C, and a
set of items S. Each item i ∈ S has a weight wi, and a value pi. In this problem the goal it to find
the subset S′ ⊆ S such that

∑
i∈S′

pi is maximised conditional on
∑
i∈S′

wi ≤ C. Alternatively this may

phrased as a decision problem by taking some goal value g and asking if there is an S′ such that∑
i∈S′

pi ≥ g.

NP-completeness for at-least-k-charge removal and minimal-at-least-k-charge removal
will be shown by a reduction from the knapsack problem. Given an instance, I, of the knapsack prob-
lem as described above, an instance, I ′, of at-least-k-charge removal is created as follows. For
every i ∈ S, two vertices are created denoted v+i and v−i and label with the corresponding item. These
are assigned a weight of wi to v+i and −wi to v−i .

The values u and α will be defined such that u is some value such that there does not exit any pair
of items, i and j, such that pi > pj but pj +u ≥ pi, and u is less than the smallest unit of precision for

the value of the items. Using this, α is defined as some value satisfying the inequality u >
4n2w2

max

α ,
where wmax is the weight of the heaviest item. This ensures that α is some distance such that if all
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Item Weight Value
I1 9 3
I2 6 2
I3 3 3

+9 −9 +6 −6 +3 −3

27 α 18 α 3

Figure 4: Example of construction of the structure from the knapsack instance. In this u < 1 and
α > 2916

vertices are at least α away from each other there will be a difference of no more than u in energy,
which will be sufficient to ensure that vertices at that distance may be safely ignored.

These vertices are now placed such that for each item such that the distance between the two
vertices v+i and v−i will give a potential energy of −pi. Recall that UCij =

qiqj
rij

, therefore this can be

achieved by placing them at a distance of
w2

i

pi
. Each of the pair of vertices representing an item is

placed in a line so that the distance between any two pairs is no less than α. An example of this
construction is provided in Figure 4.

The value k is chosen as k =

(∑
i∈I

wi

)
− c, ensuring that there will be no more than c charges

left after removing k, corresponding to a valid assignment for the knapsack instance. Finally, the goal
value will be chosen as g′ = −g + u.

It follows from this construction that any removal of at-least-k charges will be a valid packing in
terms of the capacity.

If the at-least-k-charge removal instance is satisfiable then there must be some valid packing
of no more than g′ energy. As the interaction between vertices corresponding to different items is
trivially small, the only way to achieve this is to choose a set of vertex pairs with an energy between
them no more than g′. As the energy between pairs is equal to the value of the items, the only way
this can be achieved this is to have items corresponding to a packing with value at least g. Conversely
if the at-least-k-charge removal instance is not satisfiable, there does not exist a packing of
value g by the same arguments.

Similarly if the knapsack instance is satisfiable then the at-least-k-charge removal instance
may be satisfied by removing all vertices not corresponding to a satisfying packing of the knapsack
instance. Finally if the knapsack instance is not satisfiable then by the previous arguments the kcr
instance also can not be satisfied. Therefore this problem is NP-Complete. Note that as the weights
on all items will be positive, with a corresponding negative energy in I ′, given a non-minimal satisfying
solution there will exist some minimal satisfying solution. Therefore minimal-at-least-k-charge
removal will also be NP-Hard.

6 Conclusions and future work

In this work we have presented the new problem of k-charge removal, and a class of functions for
which the general case is NP-Complete. We have also shown that the problem remains NP-Complete
under both the restriction that we have only two species of ions and the Buckingham-Coulomb energy
function and the restriction we only use the Coulomb potential on an unbounded number of ion
species.

One obvious question would be if approximation results can be gained for this problem. We would
submit that while it seems likely that the general case is APX-hard, under a bound on the number of
ions this problem may well be approximable within a reasonable factor.

16



From a chemistry stand point, while we have made progress towards physical constructions there
is still a lot that could be done in this regard. As such investigation into the restrictions of having
more realistic physical values remains an important unexplored direction. Another question would be
if we can investigate the convergence of these interactions, particularly the Coulomb potential, over a
periodic structure to more fully understand the energy function.
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