7 research outputs found

    XPD codon 312 and 751 polymorphisms, and AFB1 exposure, and hepatocellular carcinoma risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of hepatocellular carcinoma (HCC) related to the exposure of aflatoxin B1 (AFB1). In this study, we have focused on the polymorphisms of xeroderma pigmentosum complementation group D (XPD) codon 312 and 751 (namely Asp312Asn and Lys751Gln), involved in nucleotide excision repair.</p> <p>Methods</p> <p>We conducted a case-control study including 618 HCC cases and 712 controls to evaluate the associations between these two polymorphisms and HCC risk for Guangxi population by means of TaqMan-PCR and PCR-RFLP analysis.</p> <p>Results</p> <p>We found that individuals featuring the XPD genotypes with codon 751 Gln alleles (namely XPD-LG or XPD-GG) were related to an elevated risk of HCC compared to those with the homozygote of XPD codon 751 Lys alleles [namely XPD-LL, adjusted odds ratios (ORs) were 1.75 and 2.47; 95% confidence interval (CIs) were 1.30-2.37 and 1.62-3.76, respectively]. A gender-specific role was evident that showed an higher risk for women (adjusted OR was 8.58 for XPD-GG) than for men (adjusted OR = 2.90 for XPD-GG). Interestingly, the interactive effects of this polymorphism and AFB1-exposure information showed the codon 751 Gln alleles increase the risk of HCC for individuals facing longer exposure years (<it>P</it><sub>interaction </sub>= 0.011, OR = 0.85). For example, long-exposure-years (> 48 years) individuals who carried XDP-GG had an adjusted OR of 470.25, whereas long-exposure-years people with XDP-LL were at lower risk (adjusted OR = 149.12). However, we did not find that XPD codon 312 polymorphism was significantly associated with HCC risk.</p> <p>Conclusion</p> <p>These findings suggest that XPD Lys751Gln polymorphism is an important modulator of AFB1 related-HCC development in Guangxi population.</p

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Perturbation of murine liver cyp-superfamily of isoforms by different combinations of pesticide mixtures

    No full text
    it was previously found that fenarimol, vinclozolin or acephate, three of the most used pesticides worldwide, provoked a marked perturbation of murine cytochrome P450 (CYP)-linked monooxygenases. Here, to more closely mimic human exposure, it was investigated whether different pesticide combinations administered i.p. in male Swiss Albino CD1 mice in single or repeated fashion (daily, for three consecutive days), affect CYP-dependent oxidations. The four simulated mixtures showed a complex pattern of CYP induction and suppression, especially after repeated injection. For example, while fenarimol alone was the most inducing agent - reaching a 79-fold increase over control in testosterone 2 alpha-hydroxylase - followed by vinclozolin and acephate, coadministration with the former markedly reduced induction. Coadministration with vinclozolin, determined various positive and negative modulations. An increase of CYP2B1/2 and CYP3A1/2-associated oxidases and a decrease of ethoxycoumarin metabolism was observed in the acephate and vinclozolin mixture. An equivalent or reduced CYP expression, if compared to double combinations, was seen using the complete mixture. Taken as a whole, the unpredictability of the recorded effects with simple mixtures, shrinks the misleading extrapolation performed on a single pesticide. If reproduced in human, such changes, altering either endogenous metabolism or biotransformation of ubiquitous toxins, might have public health implications

    Surface Modifications for Improved Wear Performance in Artificial Joints: A Review

    No full text

    Effect of Different Constraint on Tribological Behaviour of Natural Fibre/Filler Reinforced Polymeric Composites: a Review

    No full text
    corecore